def test_eval_strategy_logreg(data_setup): data_set = data_setup train, test = train_test_data_setup(data=data_set) test_skl_model = LogisticRegression(C=10., random_state=1, solver='liblinear', max_iter=10000, verbose=0) test_skl_model.fit(train.features, train.target) expected_result = test_skl_model.predict(test.features) test_model_node = PrimaryNode(model_type='logit') test_model_node.fit(input_data=train) actual_result = test_model_node.predict(input_data=test) assert len(actual_result.predict) == len(expected_result)
def test_node_with_manual_preprocessing_has_correct_behaviour_and_attributes( data_setup): model_type = 'logit' node_default = PrimaryNode(model_type=model_type) node_manual = PrimaryNode(model_type=model_type, manual_preprocessing_func=Normalization) default_node_prediction = node_default.fit(data_setup) manual_node_prediction = node_manual.fit(data_setup) assert node_manual.manual_preprocessing_func is not None assert node_default.manual_preprocessing_func != node_manual.manual_preprocessing_func assert not np.array_equal(default_node_prediction.predict, manual_node_prediction.predict) assert node_manual.descriptive_id == '/n_logit_default_params_custom_preprocessing=Normalization'