def test_belief_vector(): """Test b_0 for vertices with equal probability""" # load graph graph_file = 'G7V_test.p' g = ext.get_graph(graph_file) v_list = [5] type_distribution = 'uniform' b_0 = cp.set_initial_belief(g, v_list, type_distribution) assert b_0 == [0, 0, 0, 0, 0, 1, 0, 0] v_list = [1, 7] b_0 = cp.set_initial_belief(g, v_list, type_distribution) assert b_0 == [0, 1 / 2, 0, 0, 0, 0, 0, 1 / 2]
def test_capture_range(): graph_file = 'G64V_grid' g = ext.get_graph(graph_file) v_target = [1, 2, 3] v_searchers = [5] target_motion = 'random' distribution_type = 'uniform' capture_range = 1 zeta = None b_0 = cp.set_initial_belief(g, v_target, distribution_type) M = cp.set_motion_matrix(g, target_motion) assert b_0[0] == 0.0 assert b_0[1] == 1 / 3 assert b_0[2] == 1 / 3 assert b_0[3] == 1 / 3 assert M[0][0] == 1 / 3 assert M[-1][-1] == 1 / 3 searchers = cp.create_dict_searchers(g, v_searchers, capture_range, zeta) s_id = 1 u = 1 s = searchers[s_id] C = s.get_capture_matrix(u) assert C[0][0] == 1 assert C[1][0] == 1 assert C[2][0] == 1 assert C[9][0] == 1
def test_run_solver_get_model_data(): horizon, theta, deadline, solver_type = get_solver_param() g, v0_target, v0_searchers, target_motion, belief_distribution = parameters_sim() gamma = 0.99 timeout = 60 # initialize parameters according to inputs b_0 = cp.set_initial_belief(g, v0_target, belief_distribution) M = cp.set_motion_matrix(g, target_motion) searchers = cp.create_dict_searchers(g, v0_searchers) # solve: 1 [low level] start, vertices_t, times_v = cm.get_vertices_and_steps(g, horizon, searchers) # create model md = mf.create_model() # add variables my_vars = mf.add_variables(md, g, horizon, start, vertices_t, searchers) # add constraints (central algorithm) mf.add_constraints(md, g, my_vars, searchers, vertices_t, horizon, b_0, M) # objective function mf.set_solver_parameters(md, gamma, horizon, my_vars, timeout) # update md.update() # Optimize model md.optimize() x_s1, b_target1 = mf.query_variables(md) obj_fun1, time_sol1, gap1, threads1 = mf.get_model_data(md) pi_dict1 = core.extract_info.xs_to_path_dict(x_s1) path1 = core.extract_info.path_as_list(pi_dict1) # solve: 2 obj_fun2, time_sol2, gap2, x_s2, b_target2, threads2 = pln.run_solver(g, horizon, searchers, b_0, M) pi_dict2 = core.extract_info.xs_to_path_dict(x_s2) path2 = core.extract_info.path_as_list(pi_dict2) # solve: 3 specs = my_specs() # initialize instances of classes path3 = pln.run_planner(specs) assert obj_fun1 == md.objVal assert round(time_sol1, 2) == round(md.Runtime, 2) assert gap1 == md.MIPGap # 1 x 2 assert x_s1 == x_s2 assert b_target1 == b_target2 assert obj_fun2 == obj_fun1 assert round(time_sol2, 2) == round(time_sol1, 2) assert gap2 == gap1 assert threads2 == threads1 # paths assert pi_dict1 == pi_dict2 assert path1 == path2 # 1 x 3 assert path1 == path3
def test_get_positions_searchers(): horizon, theta, deadline, solver_type = get_solver_param() g, v0_target, v0_searchers, target_motion, belief_distribution = parameters_sim() # ________________________________________________________________________________________________________________ # INITIALIZE # initialize parameters according to inputs b_0 = cp.set_initial_belief(g, v0_target, belief_distribution) M = cp.set_motion_matrix(g, target_motion) searchers = cp.create_dict_searchers(g, v0_searchers) specs = my_specs() target = cp.create_target(specs) obj_fun, time_sol, gap, x_searchers, b_target, threads = pln.run_solver(g, horizon, searchers, b_0, M) # get position of each searcher at each time-step based on x[s, v, t] variable searchers, s_pos = pln.update_plan(searchers, x_searchers) assert s_pos[1, 0] == 1 assert s_pos[1, 1] == 3 assert s_pos[1, 2] == 5 assert s_pos[1, 3] == 6 assert s_pos[2, 0] == 2 assert s_pos[2, 1] == 5 assert s_pos[2, 2] == 6 assert s_pos[2, 3] == 7 assert searchers[1].path_planned[0] == [1, 3, 5, 6] assert searchers[2].path_planned[0] == [2, 5, 6, 7] new_pos = pln.next_from_path(s_pos, 1) searchers = pln.searchers_evolve(searchers, new_pos) assert searchers[1].path_taken[1] == 3 assert searchers[2].path_taken[1] == 5 assert searchers[1].current_pos == 3 assert searchers[2].current_pos == 5 # get next time and vertex (after evolving position) next_time, v_target = ext.get_last_info(target.stored_v_true) # evolve searcher position searchers[1].current_pos = v_target searchers, target = sf.check_for_capture(searchers, target) assert target.is_captured is True
def test_init_wrapper(): horizon, theta, deadline, solver_type = get_solver_param() g, v0_target, v0_searchers, target_motion, belief_distribution = parameters_sim() assert v0_target == [7] # initialize parameters according to inputs b_0 = cp.set_initial_belief(g, v0_target, belief_distribution) M = cp.set_motion_matrix(g, target_motion) searchers_ = cp.create_dict_searchers(g, v0_searchers) # ________________________________________________________________________________________________________________ specs = my_specs() # initialize instances of classes belief, searchers, solver_data, target = pln.init_wrapper(specs) belief1 = cp.create_belief(specs) assert belief1.stored[0] == b_0 assert belief1.milp_init_belief == b_0 assert belief1.new == b_0 assert belief1.start_belief == b_0 assert belief.stored[0] == b_0 assert belief.milp_init_belief == b_0 assert belief.new == b_0 assert belief.start_belief == b_0 assert target.start_possible == v0_target assert target.start_true == target.stored_v_true[0] assert target.motion_matrix == M assert target.stored_v_true[0] in set(v0_target) assert target.stored_v_possible[0] == v0_target assert specs.size_team == len(searchers.keys()) for s_id in searchers.keys(): idx = s_id - 1 s = searchers[s_id] assert s.id == s_id assert s.start == v0_searchers[idx] assert s.start in set(v0_searchers) assert all(s.capture_matrices) == all(searchers_[s_id].capture_matrices) assert len(s.path_planned) == 0 assert s.path_taken[0] == searchers_[s_id].start assert solver_data.solver_type == 'central' assert solver_data.theta == 2 assert solver_data.horizon[0] == horizon assert solver_data.deadline == deadline
def test_create_belief(): g = ext.get_graph_00() n = len(g.vs) v0_target = [7] b_0_true = [0, 0, 0, 0, 0, 0, 0, 1] belief_distribution = "uniform" b_0 = cp.set_initial_belief(g, v0_target, belief_distribution) v_list = cp.v_list_from_belief(b_0) assert v_list == v0_target assert b_0 == b_0_true belief1 = MyBelief(b_0) assert belief1.stored[0] == b_0 assert belief1.milp_init_belief == b_0 assert belief1.new == b_0 assert belief1.start_belief == b_0 specs = my_specs() assert specs.start_target_v_list == v0_target assert specs.b0 is None assert specs.belief_distribution == "uniform" v_list2 = cp.placement_list(specs, 't') assert v_list == v_list2 assert v0_target == v_list2 b_02 = cp.set_initial_belief(g, v_list2, belief_distribution) assert b_02 == b_0 assert b_02 == b_0_true belief2 = cp.create_belief(specs) assert belief2.stored[0] == b_0 assert belief2.milp_init_belief == b_0 assert belief2.new == b_0 assert belief2.start_belief == b_0
def test_set_initial_belief(): g = ext.get_graph_00() n = len(g.vs) v0_target = [7] belief_distribution = "uniform" b_0 = cp.set_initial_belief(g, v0_target, belief_distribution) assert len(b_0) == (n + 1) for i in range(n): assert b_0[i] == 0.0 assert b_0[n] == 1 v_list = cp.v_list_from_belief(b_0) assert len(v_list) == len(v0_target) assert v_list[0] == v0_target[0]
def test_belief_class_init(): """Test class belief""" n, b_0, M, searchers = parameters_7v_random_motion() belief = MyBelief(b_0) assert len(belief.start_belief) == n + 1 assert len(belief.stored[0]) == n + 1 assert len(belief.milp_init_belief) == n + 1 assert belief.start_belief == b_0 assert belief.stored[0] == b_0 assert belief.milp_init_belief == b_0 v0_target = [7] b0 = cp.set_initial_belief(n, v0_target) assert b0 == [0, 0, 0, 0, 0, 0, 0, 1]
def parameters_7v_random_motion(): """Parameters pre-defined for unit tests""" # load graph graph_file = 'G7V_test.p' g = ext.get_graph(graph_file) # input for target initial vertices (belief) v_target = [7] # initial searcher vertices v_searchers = [1, 2] deadline = 3 # type of motion target_motion = 'random' belief_distribution = 'uniform' # initialize parameters b_0 = cp.set_initial_belief(g, v_target, belief_distribution) M = cp.set_motion_matrix(g, target_motion) searchers = cp.create_dict_searchers(g, v_searchers) n = 7 return n, b_0, M, searchers
def test_time_consistency(): # GET parameters for the simulation, according to sim_param horizon, theta, deadline, solver_type = get_solver_param() g, v0_target, v0_searchers, target_motion, belief_distribution = parameters_sim() gamma = 0.99 # get sets for easy iteration V, n = ext.get_set_vertices(g) # ________________________________________________________________________________________________________________ # INITIALIZE # initialize parameters according to inputs b_0 = cp.set_initial_belief(g, v0_target, belief_distribution) M = cp.set_motion_matrix(g, target_motion) searchers = cp.create_dict_searchers(g, v0_searchers) solver_data = MySolverData(horizon, deadline, theta, g, solver_type) belief = MyBelief(b_0) target = MyTarget(v0_target, M) # initialize time: actual sim time, t = 0, 1, .... T and time relative to the planning, t_idx = 0, 1, ... H t, t_plan = 0, 0 # FIRST ITERATION # call for model solver wrapper according to centralized or decentralized solver and return the solver data obj_fun, time_sol, gap, x_searchers, b_target, threads = pln.run_solver(g, horizon, searchers, belief.new, M, solver_type, gamma) # save the new data solver_data.store_new_data(obj_fun, time_sol, gap, threads, x_searchers, b_target, horizon) # get position of each searcher at each time-step based on x[s, v, t] variable searchers, path = pln.update_plan(searchers, x_searchers) # reset time-steps of planning t_plan = 1 path_next_t = pln.next_from_path(path, t_plan) # evolve searcher position searchers = pln.searchers_evolve(searchers, path_next_t) # update belief belief.update(searchers, path_next_t, M, n) # update target target = sf.evolve_target(target, belief.new) # next time-step t, t_plan = t + 1, t_plan + 1 assert t == 1 assert t_plan == 2 # get next time and vertex (after evolving position) t_t, v_t = ext.get_last_info(target.stored_v_true) assert target.current_pos == v_t t_s, v_s = ext.get_last_info(searchers[1].path_taken) assert t_t == t_s assert t_t == t # high level specs = my_specs() belief1, searchers1, solver_data1, target1 = pln.init_wrapper(specs) deadline1, horizon1, theta1, solver_type1, gamma1 = solver_data1.unpack() M1 = target1.unpack() assert deadline1 == deadline assert horizon1 == horizon assert theta1 == theta assert solver_type1 == solver_type assert gamma1 == gamma assert M1 == M # initialize time: actual sim time, t = 0, 1, .... T and time relative to the planning, t_idx = 0, 1, ... H t1, t_plan1 = 0, 0 # FIRST ITERATION # call for model solver wrapper according to centralized or decentralized solver and return the solver data obj_fun1, time_sol1, gap1, x_searchers1, b_target1, threads1 = pln.run_solver(g, horizon1, searchers1, belief1.new, M1, solver_type1, gamma1) assert obj_fun == obj_fun1 assert round(time_sol, 2) == round(time_sol1, 2) assert gap == gap1 assert x_searchers == x_searchers1 assert b_target == b_target1 assert threads == threads1 # save the new data solver_data1.store_new_data(obj_fun1, time_sol1, gap1, threads1, x_searchers1, b_target1, horizon1) # get position of each searcher at each time-step based on x[s, v, t] variable searchers1, path1 = pln.update_plan(searchers1, x_searchers1) assert path == path1 # reset time-steps of planning t_plan1 = 1 path_next_t1 = pln.next_from_path(path1, t_plan1) assert path_next_t == path_next_t1 # evolve searcher position searchers1 = pln.searchers_evolve(searchers1, path_next_t1) # update belief belief1.update(searchers1, path_next_t1, M1, n) # update target target1 = sf.evolve_target(target1, belief1.new) # next time-step t1, t_plan1 = t1 + 1, t_plan1 + 1 assert t1 == 1 assert t_plan1 == 2 assert target1.start_possible == target.start_possible # get next time and vertex (after evolving position) t_t1, v_t1 = ext.get_last_info(target1.stored_v_true) t_s1, v_s1 = ext.get_last_info(searchers1[1].path_taken) assert t_t1 == t_s1 assert t_t1 == t1 assert t_t1 == t_t assert t_s1 == t_s assert v_s1 == v_s