def run_job( job_class: Type[base_jobs.JobBase], sync: bool, namespace: Optional[str] = None, pipeline: Optional[beam.Pipeline] = None ) -> beam_job_models.BeamJobRunModel: """Runs the specified job synchronously. In other words, the function will wait for the job to finish running before returning a value. Args: job_class: type(base_jobs.JobBase). The type of job to run. sync: bool. Whether to run the job synchronously. namespace: str. The namespace in which models should be created. pipeline: Pipeline. The pipeline to run the job upon. If omitted, then a new pipeline will be used instead. Returns: BeamJobRun. Contains metadata related to the execution status of the job. Raises: RuntimeError. Failed to deploy given job to the Dataflow service. """ if pipeline is None: pipeline = beam.Pipeline( runner=runners.DirectRunner() if sync else runners.DataflowRunner(), options=job_options.JobOptions(namespace=namespace)) job = job_class(pipeline) job_name = job_class.__name__ # NOTE: Exceptions raised within this context are logged and suppressed. with _job_bookkeeping_context(job_name) as run_model: _ = job.run() | job_io.PutResults(run_model.id) run_result = pipeline.run() if sync: run_result.wait_until_finish() run_model.latest_job_state = beam_job_models.BeamJobState.DONE.value elif run_result.has_job: run_model.dataflow_job_id = run_result.job_id() run_model.latest_job_state = run_result.state else: raise RuntimeError( 'Failed to deploy %s to the Dataflow service. Please try again ' 'after a few minutes.' % job_name) # NDB operations in Beam do not properly update the context cache # (this cache is separate for every application thread), thus we clear # it ourselves. with datastore_services.get_ndb_context() as ndb_context: ndb_context.clear_cache() return run_model
def test_async_job(self) -> None: mock_run_result = mock.Mock() mock_run_result.has_job = True mock_run_result.job_id.return_value = '123' mock_run_result.state = 'PENDING' pipeline = beam.Pipeline( runner=runners.DirectRunner(), options=job_options.JobOptions(namespace=self.namespace)) with self.swap_to_always_return(pipeline, 'run', value=mock_run_result): run = jobs_manager.run_job(WorkingJob, False, pipeline=pipeline) self.assertEqual(run.dataflow_job_id, '123') self.assertEqual(run.latest_job_state, 'PENDING')
def test_async_job_that_does_not_start(self) -> None: mock_run_result = mock.Mock() mock_run_result.has_job = False mock_run_result.job_id.return_value = None mock_run_result.state = 'UNKNOWN' pipeline = beam.Pipeline( runner=runners.DirectRunner(), options=job_options.JobOptions(namespace=self.namespace)) with self.swap_to_always_return(pipeline, 'run', value=mock_run_result): run = jobs_manager.run_job(WorkingJob, False, pipeline=pipeline) self.assertIsNone(run.dataflow_job_id) self.assertEqual(run.latest_job_state, 'FAILED') result = beam_job_services.get_beam_job_run_result(run.id) self.assertIn('Failed to deploy WorkingJob', result.stderr)
def __init__(self, *args: Any, **kwargs: Any) -> None: super(PipelinedTestBase, self).__init__(*args, **kwargs) self.pipeline = test_pipeline.TestPipeline( runner=runners.DirectRunner(), options=job_options.JobOptions(namespace=self.namespace)) self._pipeline_context_stack: Optional[contextlib.ExitStack] = None
def test_unsupported_values(self) -> None: with self.assertRaisesRegex( ValueError, r'Unsupported option\(s\)'): # type: ignore[no-untyped-call] job_options.JobOptions(a='a', b='b')
def test_overwritten_values(self) -> None: options = job_options.JobOptions(namespace='abc') self.assertEqual(options.namespace, 'abc')
def test_default_values(self) -> None: options = job_options.JobOptions() self.assertIsNone(options.namespace)