Exemple #1
0
    def create_sample_graph(data1: np.ndarray) -> Graph:
        graph = Graph()

        # input
        x = Input('placeholder', [1, 5, 5, 3], Float32())

        # Conv1
        w1 = Constant('weight1', Float32(), data1)
        conv1 = Conv('conv1', [1, 4, 4, 3],
                     QUANTIZED_PACKED(), {
                         'X': x,
                         'W': w1
                     },
                     kernel_shape=[2, 2])
        conv1.is_quantized = True

        pool1 = SpaceToDepth('s2d', [1, 2, 2, 12], Float32(), {'input': conv1})

        # One output
        y = Output('output', [1, 2, 2, 12], Float32(), {'input': pool1})

        # add ops to the graph
        graph.add_op_and_inputs(y)

        return graph
Exemple #2
0
    def create_expected_graph(data: np.ndarray) -> Graph:
        graph = Graph()

        # input
        x = Input('placeholder', [1, 5, 5, 3], Float32())

        # constant and internal nodes
        w = Constant('weight', Float32(), data)
        q = QTZ_binary_mean_scaling('qtz1', [1, 2, 2, 3], Float32(),
                                    {'input': w})

        # Conv
        conv = Conv('conv', [1, 4, 4, 3],
                    Float32(), {
                        'X': x,
                        'W': q
                    },
                    kernel_shape=[2, 2])

        # One output
        rs = Reshape('reshape', [1, 48], Float32(), {'data': conv})
        y = Output(
            'output',
            [1, 48],
            Float32(),
            {'input': rs},
        )

        # add ops to the graph
        graph.add_op_and_inputs(y)

        return graph
Exemple #3
0
    def make_simple_model(self) -> Model:
        graph = Graph()

        # two inputs
        x = Input(
            'input',
            [1, 5, 5, 3],
            Float32(),
        )

        w = Constant(
            'weight',
            Float32(),
            np.zeros([1, 2, 2, 3]),
            dimension_format='NHWC',
        )

        # Conv
        conv = Conv('conv', [1, 4, 4, 1],
                    Float32(), {
                        'X': x,
                        'W': w
                    },
                    kernel_shape=[2, 2])

        # One output
        y = Output('output', [1, 4, 4, 1], Float32(), {'input': conv})

        # add ops to the graph
        graph.add_op_and_inputs(y)
        model = Model()
        model.graph = graph
        return model
Exemple #4
0
    def create_sample_graph(data1: np.ndarray, data2: np.ndarray) -> Graph:
        graph = Graph()

        # input
        x = Input('placeholder', [1, 5, 5, 3], Float32())

        # Conv1
        w1 = Constant('weight1', Float32(), data1)
        conv1 = Conv('conv1', [1, 4, 4, 3], Float32(), {'X': x, 'W': w1}, kernel_shape=[2, 2])

        # activation quantizer
        s1 = Constant('aq_const1', Float32(), np.array(1))
        s2 = Constant('aq_const2', Float32(), np.array(2))
        aq = QTZ_linear_mid_tread_half('aqtz1', [1, 4, 4, 3], Float32(), {'X': conv1, 'Y': s1, 'Z': s2})

        # Conv2
        w2 = Constant('weight2', Float32(), data2)
        kq = QTZ_binary_mean_scaling('kqtz1', [1, 2, 2, 3], Float32(), {'input': w2})
        conv2 = Conv('conv2', [1, 3, 3, 3], Float32(), {'X': aq, 'W': kq}, kernel_shape=[2, 2])
        conv2.a_quantizer = [aq]
        conv2.quantizer = kq

        # One output
        y = Output('output', [1, 3, 3, 3], Float32(), {'input': conv2})

        # add ops to the graph
        graph.add_op_and_inputs(y)

        return graph
Exemple #5
0
    def create_sample_graph() -> Graph:
        graph = Graph()

        x = Input('placeholder', [2], Float32())

        s1 = Constant('potato_1', Float32(), np.array([1, 2]))
        s2 = Constant('potato_2', Float32(), np.array([1, 3]))
        add1 = Add('potatoes', [2], Float32(), {'A': s1, 'B': s2})
        add2 = Add('more_potatoes', [2], Float32(), {'A': x, 'B': add1})

        # One output
        y = Output('output', [2], Float32(), {'input': add2})

        # add ops to the graph
        graph.add_op_and_inputs(y)

        return graph
Exemple #6
0
    def create_sample_graph(data1: np.ndarray, data2: np.ndarray) -> Graph:
        graph = Graph()

        # input
        x = Input('placeholder', [1, 5, 5, 3], Float32())

        # Conv1
        w1 = Constant('weight1', Float32(), data1)
        conv1 = Conv('conv1', [1, 4, 4, 3], Float32(), {'X': x, 'W': w1}, kernel_shape=[2, 2])

        # activation quantizer
        s1 = Constant('aq_const1', Int32(), np.array([2], dtype=np.int32))
        s2 = Constant('aq_const2', Float32(), np.array([2.0], dtype=np.float32))
        aq1 = QTZ_linear_mid_tread_half('aqtz1', [1, 4, 4, 3], Float32(), {'X': conv1, 'Y': s1, 'Z': s2})

        # Conv2
        w2 = Constant('weight2', Float32(), data2)
        kq = QTZ_binary_mean_scaling('kqtz1', [1, 2, 2, 3], Float32(), {'input': w2})
        conv2 = Conv('conv2', [1, 3, 3, 3], Float32(), {'X': aq1, 'W': kq}, kernel_shape=[2, 2])
        conv2.a_quantizer = [aq1]
        conv2.quantizer = kq
        conv2.is_quantized = True

        sc = Constant('bn_scale', Float32(), np.random.rand(3))
        be = Constant('bn_b', Float32(), np.random.rand(3))
        mu = Constant('bn_mu', Float32(), np.random.rand(3))
        va = Constant('bn_var', Float32(), np.random.rand(3))
        bn = BatchNormalization('bn', [1, 3, 3, 3], Float32(), {'X': conv2,
                                                                'scale': sc,
                                                                'B': be,
                                                                'mean': mu,
                                                                'var': va})

        # activation quantizer
        s3 = Constant('aq_const3', Int32(), np.array([2], dtype=np.int32))
        s4 = Constant('aq_const4', Float32(), np.array([2.0], dtype=np.float32))
        aq2 = QTZ_linear_mid_tread_half('aqtz2', [1, 3, 3, 3], Float32(), {'X': bn, 'Y': s3, 'Z': s4})

        # One output
        y = Output('output', [1, 3, 3, 3], Float32(), {'input': aq2})

        # add ops to the graph
        graph.add_op_and_inputs(y)

        return graph
Exemple #7
0
    def create_transposed_graph(self, data: np.ndarray) -> Graph:
        graph = Graph()
        data = data.transpose([3, 2, 1, 0])

        # input
        x = Input('placeholder', [1, 5, 5, 3],
                  Float32(),
                  dimension_format='NHWC')

        # constant and internal nodes
        w = Constant('weight', Float32(), data, dimension_format='NHWC')

        i = Identity('identity1', [1, 2, 2, 3],
                     Float32(), {'input': w},
                     dimension_format='NHWC')

        q = QTZ_binary_mean_scaling('qtz1', [1, 2, 2, 3],
                                    Float32(), {'input': i},
                                    dimension_format='NHWC')

        # Conv
        conv = Conv('conv', [1, 4, 4, 3],
                    Float32(), {
                        'X': x,
                        'W': q
                    },
                    kernel_shape=[2, 2],
                    dimension_format='NHWC')

        rs = Reshape('reshape', [1, 48], Float32(), {'data': conv})

        # One output
        y = Output(
            'output',
            [1, 48],
            Float32(),
            {'input': rs},
        )

        # add ops to the graph
        graph.add_op_and_inputs(y)

        return graph
Exemple #8
0
    def create_sample_graph_2(data1: np.ndarray) -> Graph:
        graph = Graph()

        # input
        x = Input('placeholder', [1, 5, 5, 3], Float32())

        # Conv1
        w1 = Constant('weight1', Float32(), data1)
        conv1 = Conv('conv1', [1, 4, 4, 3], Float32(), {'X': x, 'W': w1}, kernel_shape=[2, 2])

        s1 = Constant('const1', Float32(), np.zeros([1, 4, 4, 3]))
        add1 = Add('add', [1, 4, 4, 3], Float32(), {'A': conv1, 'B': s1})

        y = Output('output', [1, 4, 4, 3], Float32(), {'input': add1})

        # add ops to the graph
        graph.add_op_and_inputs(y)

        return graph
Exemple #9
0
    def test_graph_conv(self) -> None:
        """Test code for making a simple graph with Conv."""
        graph = Graph()

        # two inputs
        x = Input(
            'input',
            [1, 5, 5, 3],
            Float32(),
        )

        w = Constant('weight', Float32(), np.zeros([1, 2, 2, 3]))

        # Conv
        conv = Conv(
            'conv',
            [1, 4, 4, 3],
            Float32(),
            {
                'X': x,
                'W': w
            },  # you can get these keys by 'Conv.input_names'
            kernel_shape=[2, 2])

        # One output
        y = Output(
            'output',
            [1, 4, 4, 3],
            Float32(),
            {'input': conv}  # you can get this key by 'Output.input_names'
        )

        # add ops to the graph
        graph.add_op(x)
        graph.add_op(w)
        graph.add_op(conv)
        graph.add_op(y)

        self.assertTrue(graph.check_nodes(),
                        "All inputs of operators must match their outputs.")
        print("Graph test passed!")
Exemple #10
0
    def create_sample_graph(data: np.ndarray) -> Graph:
        graph = Graph()

        # input
        x = Input('placeholder', [3, 5, 5, 1],
                  Float32(),
                  dimension_format='CWHN')

        # constant and internal nodes
        w = Constant('weight', Float32(), data, dimension_format='CWHN')
        i1 = Identity('identity1', [3, 2, 2, 1],
                      Float32(), {'input': w},
                      dimension_format='CWHN')
        q = QTZ_binary_mean_scaling('qtz1', [3, 2, 2, 1],
                                    Float32(), {'input': i1},
                                    dimension_format='CWHN')

        # Conv
        conv = Conv('conv', [3, 4, 4, 1],
                    Float32(), {
                        'X': x,
                        'W': q
                    },
                    kernel_shape=[2, 2],
                    dimension_format='CWHN')

        # One output
        rs = Reshape('reshape', [1, 48], Float32(), {'data': conv})
        y = Output(
            'output',
            [1, 48],
            Float32(),
            {'input': rs},
        )

        # add ops to the graph
        graph.add_op_and_inputs(y)

        return graph
Exemple #11
0
    def create_quantized_graph2(self, data1: np.ndarray, data2: np.ndarray,
                                data3: np.ndarray) -> Graph:
        graph = Graph()

        # input
        x = Input(
            'placeholder',
            [1, 5, 5, 3],
            Float32(),
        )

        # constant and internal nodes
        scaling1, qdata1 = self.binary_mean_scaling(data1)
        w = Constant('weight', Float32(), qdata1 * scaling1)

        q = QTZ_binary_mean_scaling('qtz1', [3, 2, 2, 3], Float32(),
                                    {'input': w})

        # Conv
        conv1 = Conv('conv1', [1, 4, 4, 3],
                     Float32(), {
                         'X': x,
                         'W': w
                     },
                     kernel_shape=[2, 2])

        s1 = Constant('aq_const1', Float32(), np.array(1))

        s2 = Constant('aq_const2', Float32(), np.array(2))

        aq = QTZ_linear_mid_tread_half('aqtz1', [1, 4, 4, 3],
                                       QUANTIZED_NOT_PACKED(), {
                                           'X': conv1,
                                           'Y': s1,
                                           'Z': s2
                                       })

        from modules.packer import Packer
        packer = Packer(1, 32)
        scaling2, qdata2 = self.binary_mean_scaling(data2)
        w2 = Constant('weight2',
                      Uint32(),
                      packer.run(qdata2),
                      packed=True,
                      actual_shape=[3, 2, 2, 3])

        q2 = QTZ_binary_mean_scaling('qtz2', [3, 2, 2, 3], Float32(),
                                     {'input': w2})
        q2.scaling_factor = scaling2

        conv2 = Conv(
            'conv2',
            [1, 3, 3, 3],
            Float32(),
            {
                'X': aq,
                'W': w2
            },
            kernel_shape=[2, 2],
            quantized=True,
        )
        conv2.quantizer = q2

        scaling3, qdata3 = self.binary_mean_scaling(data3)
        w3 = Constant('weight2',
                      Uint32(),
                      packer.run(qdata3),
                      packed=True,
                      actual_shape=[3, 2, 2, 3])

        q3 = QTZ_binary_mean_scaling('qtz3', [3, 2, 2, 3], Float32(),
                                     {'input': w3})
        q3.scaling_factor = scaling3

        conv3 = Conv('conv3', [1, 3, 3, 3],
                     Float32(), {
                         'X': aq,
                         'W': w3
                     },
                     kernel_shape=[2, 2],
                     quantized=True)
        conv3.quantizer = q3

        y1 = Output('output1', [1, 3, 3, 3], Float32(), {'input': conv2})

        y2 = Output('output2', [1, 3, 3, 3], Float32(), {'input': conv3})

        # add ops to the graph
        graph.add_op_and_inputs(y1)
        graph.add_op_and_inputs(y2)

        return graph, scaling2, scaling3
Exemple #12
0
    def create_sample_graph3(self, data1: np.ndarray, data2: np.ndarray,
                             data3: np.ndarray) -> Graph:
        graph = Graph()

        # input
        x = Input(
            'placeholder',
            [1, 5, 5, 3],
            Float32(),
        )

        # constant and internal nodes
        w = Constant('weight', Float32(), data1)

        q = QTZ_binary_mean_scaling('qtz1', [3, 2, 2, 3], Float32(),
                                    {'input': w})

        # Conv
        conv1 = Conv('conv1', [1, 4, 4, 3],
                     Float32(), {
                         'X': x,
                         'W': q
                     },
                     kernel_shape=[2, 2])

        i2 = Identity('identity2', [1, 4, 4, 3], Float32(), {'input': conv1})

        s1 = Constant('aq_const1', Float32(), np.array(1))

        s2 = Constant('aq_const2', Float32(), np.array(2))

        aq = QTZ_linear_mid_tread_half('aqtz1', [1, 4, 4, 3], Float32(), {
            'X': i2,
            'Y': s1,
            'Z': s2
        })

        w2 = Constant('weight2', Float32(), data2)

        q2 = QTZ_binary_mean_scaling('qtz2', [3, 2, 2, 3], Float32(),
                                     {'input': w2})

        conv2 = Conv('conv2', [1, 3, 3, 3],
                     Float32(), {
                         'X': aq,
                         'W': q2
                     },
                     kernel_shape=[2, 2])

        w3 = Constant('weight3', Float32(), data3)

        q3 = QTZ_binary_mean_scaling('qtz3', [3, 2, 2, 3], Float32(),
                                     {'input': w3})

        conv3 = Conv('conv3', [1, 3, 3, 3],
                     Float32(), {
                         'X': aq,
                         'W': q3
                     },
                     kernel_shape=[2, 2])

        y1 = Output('output1', [1, 3, 3, 3], Float32(), {'input': conv2})

        y2 = Output('output2', [1, 3, 3, 3], Float32(), {'input': conv3})

        # add ops to the graph
        graph.add_op_and_inputs(y1)
        graph.add_op_and_inputs(y2)

        return graph
Exemple #13
0
    def create_quantized_graph(self, data: np.ndarray, data2: np.ndarray, data3: np.ndarray) \
            -> Tuple[Graph, np.float32, np.float32]:
        graph = Graph()

        # two inputs
        x = Input(
            'placeholder',
            [1, 5, 5, 3],
            Float32(),
        )

        from modules.packer import Packer
        packer = Packer(1, 32)
        data = data.transpose([3, 2, 1, 0])
        scaling, qdata = self.binary_mean_scaling(data)
        shape = list(data.shape)
        w = Constant(
            'weight',
            Float32(),
            qdata * scaling,
        )

        q = QTZ_binary_mean_scaling('qtz1', shape, Float32(), {'input': w})
        q.scaling_factor = scaling

        # Conv
        conv1 = Conv(
            'conv1',
            [1, 4, 4, 3],
            Float32(),
            {
                'X': x,
                'W': w
            },
            kernel_shape=[2, 2],
        )

        s1 = Constant('aq_const1', Float32(), np.array(1))

        s2 = Constant('aq_const2', Float32(), np.array(2))

        aq = QTZ_linear_mid_tread_half('aqtz1', [1, 4, 4, 3],
                                       QUANTIZED_NOT_PACKED(), {
                                           'X': conv1,
                                           'Y': s1,
                                           'Z': s2
                                       })

        dummy = Transpose('dummy', [1, 4, 4, 3],
                          QUANTIZED_NOT_PACKED(), {'data': aq},
                          perm=[0, 1, 2, 3])

        scaling2, qdata2 = self.binary_mean_scaling(data2)
        w2 = Constant('weight2',
                      Uint32(),
                      packer.run(qdata2),
                      packed=True,
                      actual_shape=[3, 2, 2, 3])

        # quantizer connected to conv2 as 'conv2.quantizer'
        q2 = QTZ_binary_mean_scaling('qtz2', [3, 2, 2, 3], Uint32(),
                                     {'input': w2})
        q2.scaling_factor = scaling2

        conv2 = Conv('conv2', [1, 3, 3, 3],
                     Float32(), {
                         'X': dummy,
                         'W': w2
                     },
                     kernel_shape=[2, 2],
                     quantized=True)
        conv2.quantizer = q2

        s3 = Constant('aq_const1', Float32(), np.array(1))

        s4 = Constant('aq_const2', Float32(), np.array(2))

        aq2 = QTZ_linear_mid_tread_half('aqtz2', [1, 3, 3, 3], Float32(), {
            'X': conv2,
            'Y': s3,
            'Z': s4
        })

        w3 = Constant('weight3', Float32(), data3)

        conv3 = Conv('conv3', [1, 2, 2, 3],
                     Float32(), {
                         'X': aq2,
                         'W': w3
                     },
                     kernel_shape=[2, 2])

        # One output
        y = Output('output', [1, 2, 2, 3], Float32(), {'input': conv3})

        # add ops to the graph
        graph.add_op_and_inputs(y)

        return graph, scaling, scaling2
Exemple #14
0
    def create_precompute_graph(self, data1: np.ndarray, data2: np.ndarray,
                                data3: np.ndarray) -> Graph:
        graph = Graph()

        # two inputs
        x = Input(
            'placeholder',
            [1, 5, 5, 3],
            Float32(),
        )

        scaling1, qdata = self.binary_mean_scaling(
            data1.transpose([3, 2, 1, 0]))
        w = Constant('weight', Float32(), qdata * scaling1)

        # Conv
        conv1 = Conv('conv1', [1, 4, 4, 3],
                     Float32(), {
                         'X': x,
                         'W': w
                     },
                     kernel_shape=[2, 2])

        s1 = Constant('aq_const1', Float32(), np.array(1))

        s2 = Constant('aq_const2', Float32(), np.array(2))

        aq = QTZ_linear_mid_tread_half('aqtz1', [1, 4, 4, 3], Float32(), {
            'X': conv1,
            'Y': s1,
            'Z': s2
        })

        dummy = Transpose('dummy', [1, 4, 4, 3],
                          Float32(), {'data': aq},
                          perm=[0, 1, 2, 3])

        scaling2, qdata2 = self.binary_mean_scaling(data2)
        w2 = Constant('weight2', Float32(), qdata2 * scaling2)

        conv2 = Conv('conv2', [1, 3, 3, 3],
                     Float32(), {
                         'X': dummy,
                         'W': w2
                     },
                     kernel_shape=[2, 2])

        s3 = Constant('aq_const1', Float32(), np.array(1))

        s4 = Constant('aq_const2', Float32(), np.array(2))

        aq2 = QTZ_linear_mid_tread_half('aqtz2', [1, 3, 3, 3], Float32(), {
            'X': conv2,
            'Y': s3,
            'Z': s4
        })

        w3 = Constant('weight3', Float32(), data3)

        conv3 = Conv('conv3', [1, 2, 2, 3],
                     Float32(), {
                         'X': aq2,
                         'W': w3
                     },
                     kernel_shape=[2, 2])

        # One output
        y = Output('output', [1, 2, 2, 3], Float32(), {'input': conv3})

        # add ops to the graph
        graph.add_op_and_inputs(y)

        return graph
Exemple #15
0
    def create_sample_graph(self, data1: np.ndarray, data2: np.ndarray,
                            data3: np.ndarray) -> Graph:
        graph = Graph()

        # input
        x = Input(
            'placeholder',
            [1, 5, 5, 3],
            Float32(),
        )

        # constant and internal nodes
        w = Constant('weight', Float32(), data1)

        i = Identity('identity1', [3, 2, 2, 3], Float32(), {'input': w})

        t = Transpose('transpose1', [3, 2, 2, 3],
                      Float32(), {'data': i},
                      perm=[3, 2, 1, 0])

        q = QTZ_binary_mean_scaling('qtz1', [3, 2, 2, 3], Float32(),
                                    {'input': t})

        # Conv
        conv1 = Conv('conv1', [1, 4, 4, 3],
                     Float32(), {
                         'X': x,
                         'W': q
                     },
                     kernel_shape=[2, 2])

        i2 = Identity('identity2', [1, 4, 4, 3], Float32(), {'input': conv1})

        s1 = Constant('aq_const1', Float32(), np.array(1))

        s2 = Constant('aq_const2', Float32(), np.array(2))

        aq = QTZ_linear_mid_tread_half('aqtz1', [1, 4, 4, 3], Float32(), {
            'X': i2,
            'Y': s1,
            'Z': s2
        })

        dummy = Transpose('dummy', [1, 4, 4, 3],
                          Float32(), {'data': aq},
                          perm=[0, 1, 2, 3])

        w2 = Constant('weight2', Float32(), data2)

        q2 = QTZ_binary_mean_scaling('qtz2', [3, 2, 2, 3], Float32(),
                                     {'input': w2})

        conv2 = Conv('conv2', [1, 3, 3, 3],
                     Float32(), {
                         'X': dummy,
                         'W': q2
                     },
                     kernel_shape=[2, 2])

        s3 = Constant('aq_const1', Float32(), np.array(1))

        s4 = Constant('aq_const2', Float32(), np.array(2))

        aq2 = QTZ_linear_mid_tread_half('aqtz2', [1, 3, 3, 3], Float32(), {
            'X': conv2,
            'Y': s3,
            'Z': s4
        })

        w3 = Constant('weight3', Float32(), data3)

        i3 = Identity('identity3', [1, 3, 3, 3], Float32(), {'input': aq2})

        conv3 = Conv('conv3', [1, 2, 2, 3],
                     Float32(), {
                         'X': i3,
                         'W': w3
                     },
                     kernel_shape=[2, 2])

        # One output
        y = Output('output', [1, 2, 2, 3], Float32(), {'input': conv3})

        # add ops to the graph
        graph.add_op_and_inputs(y)

        return graph
Exemple #16
0
    def create_graph(self, graph):

        x1 = Input(
            'input1',
            [1, 4, 4, 3],
            Float32(),
        )

        w1 = Constant(
            'weight1',
            Float32(),
            np.zeros([1, 2, 2, 3])
        )

        conv1 = Conv(
            'conv1',
            [1, 3, 3, 3],
            Float32(),
            {'X': x1, 'W': w1},
            kernel_shape=[2, 2]
        )

        w2 = Constant(
            'weight2',
            Float32(),
            np.zeros([3, 2, 2, 3])
        )

        conv2 = Conv(
            'conv2',
            [1, 2, 2, 3],
            Float32(),
            {'X': conv1, 'W': w2},
            kernel_shape=[2, 2]
        )

        x2 = Input(
            'input2',
            [3, 3, 3, 3],
            Float32(),
        )

        x3 = Input(
            'input3',
            [3, 3, 3, 3],
            Float32(),
        )

        conv3 = Conv(
            'conv3',
            [3, 2, 2, 3],
            Float32(),
            {'X': x2, 'W': conv2},
            kernel_shape=[2, 2]
        )

        conv4 = Conv(
            'conv4',
            [1, 2, 2, 3],
            Float32(),
            {'X': x3, 'W': conv3},
            kernel_shape=[2, 2]
        )

        y = Output(
            'output',
            [1, 2, 2, 3],
            Float32(),
            {'input': conv4}
        )

        # add ops to the graph
        graph.add_op_and_inputs(y)