Exemple #1
0
    def __init__(self, shell):
        self.options = Options()
        self.shell = shell

        self.job = self.job()

        self.load()
Exemple #2
0
    def __init__(self, shell):
        self.options = Options()
        self.shell = shell

        self.loader = core.loader

        self.load()
 def test_as_json(self):
     expected_args = {"arg1": "val1", "arg2": "val2", "arg3": "val3"}
     scheduler = {
         'type': 'test_type',
         'autorun': 'true',
         'args': expected_args
     }
     options = Options(enabled=True, scheduler=scheduler)
     expected_json = {
         'enabled': 'True',
         'children': {},
         'scheduler': scheduler
     }
     self.assertDictEqual(options.as_json(), expected_json)
Exemple #4
0
    def __init__(self, shell):
        self.options = Options()
        self.shell = shell

        self.loader = core.loader

        self.load()
 def test_to_xml(self):
     expected_args = {"arg1": "val1", "arg2": "val2", "arg3": "val3"}
     scheduler = {
         'type': 'test_type',
         'autorun': 'true',
         'args': expected_args
     }
     options = Options(enabled=True, scheduler=scheduler)
     options_xml = options.to_xml()
     options_derived = Options(xml=options_xml)
     self.assertEqual(options.enabled, options_derived.enabled)
     self.assertEqual(options.scheduler['type'],
                      options_derived.scheduler['type'])
     self.assertEqual(options.scheduler['autorun'],
                      options_derived.scheduler['autorun'])
     self.assertDictEqual(options.scheduler['args'],
                          options_derived.scheduler['args'])
Exemple #6
0
def update_workflow(playbook_name, workflow_name):
    if running_context.controller.is_workflow_registered(
            playbook_name, workflow_name):
        if request.get_json():
            data = request.get_json()
            if 'scheduler' in data:
                enabled = data['scheduler']['enabled'] if 'enabled' in data[
                    'scheduler'] else False
                scheduler = {
                    'type':
                    data['scheduler']['type']
                    if 'type' in data['scheduler'] else 'cron',
                    'autorun': (str(data['scheduler']['autorun']).lower() if
                                'autorun' in data['scheduler'] else 'false'),
                    'args':
                    json.loads(data['scheduler']['args'])
                    if 'args' in data['scheduler'] else {}
                }
                running_context.controller.get_workflow(playbook_name, workflow_name).options = \
                    Options(scheduler=scheduler, enabled=enabled)
            if 'new_name' in data and data['new_name']:
                running_context.controller.update_workflow_name(
                    playbook_name, workflow_name, playbook_name,
                    data['new_name'])
                workflow_name = data['new_name']
            workflow = running_context.controller.get_workflow(
                playbook_name, workflow_name)
            if workflow:
                return json.dumps({
                    'workflow': {
                        'name': workflow_name,
                        'options': workflow.options.as_json()
                    },
                    'status': 'success'
                })
            else:
                json.dumps({
                    'status':
                    'error: altered workflow can no longer be located'
                })
        else:
            return json.dumps({'status': 'error: invalid json'})
    else:
        return json.dumps({'status': 'error: workflow name is not valid'})
Exemple #7
0
class Plugin(object):

    NAME = ""
    DESCRIPTION = ""
    AUTHORS = []

    def __init__(self, shell):
        self.options = Options()
        self.shell = shell

        self.loader = core.loader
        self.job = self.job()

        self.load()

    ''' called when the framework starts '''

    def load(self):
        pass

    ''' called when the plugin is invoked '''

    def run(self):
        pass

    ''' job type of the associated plugin '''

    def job(self):
        pass

    def dispatch(self, workloads, job, checkrepeat=True, repeatzombie=''):
        if not repeatzombie:
            target = self.options.get("ZOMBIE")
        else:
            target = repeatzombie
        commas = [x.strip() for x in target.split(",")]

        splitted = []
        for x in commas:
            s = x.split("-")
            if len(s) == 1:
                splitted.append(str(x))
            else:
                for i in range(int(s[0]), int(s[1]) + 1):
                    splitted.append(str(i))

        self.ret_jobs = []
        for server in self.shell.stagers:
            for session in server.sessions:
                if (target.lower().strip() == "all"
                        or str(session.id) in splitted) and not session.killed:
                    if server.stager.WORKLOAD in workloads:
                        self.shell.print_verbose("Server: %s Sesson %s" %
                                                 (server, session))
                        workload = workloads[server.stager.WORKLOAD]
                        options = copy.deepcopy(self.options)
                        j = job(self.shell, session.id, self.STATE, workload,
                                options)
                        self.shell.jobs.append(j)
                        self.ret_jobs.append(j.id)

        if checkrepeat:
            if options.get("REPEAT") == "true":
                self.repeat(self.shell, workloads, options)

    def load_payload(self, id):
        try:
            for server in self.shell.stagers:
                if int(server.payload_id) == int(id):
                    return server.get_payload().decode()
        except:
            pass

        return None

    def parse_ips(self, ips):
        import core.cidr
        return core.cidr.get_ips(ips)

    def parse_ports(self, ports):
        import core.cidr
        return core.cidr.get_ports(ports)

    def make_vb_array(self, name, array):
        ret = "dim %s(%d)\n" % (name, len(array) - 1)

        count = 0
        for el in array:
            x = '%s(%d) = "%s"\n' % (name, count, str(el))
            ret += x
            count += 1

        return ret

    def make_js_array(self, name, array):
        array = ['"%s"' % item for item in array]
        ret = "var %s = [%s];" % (name, ", ".join(array))
        return ret

    def random_string(self, length):
        return ''.join(random.SystemRandom().choice(string.ascii_letters +
                                                    string.digits)
                       for n in range(length))

    def validate_shellcode(self, shellcode):
        if len(shellcode) % 2 != 0:
            return False

        return all(c in string.hexdigits for c in shellcode)

    def convert_shellcode(self, shellcode):
        decis = []
        count = 0
        for i in range(0, len(shellcode), 2):
            count += 1
            hexa = shellcode[i:i + 2]
            deci = int(hexa, 16)

            if count % 25 == 0:
                decis.append(" _\\n" + str(deci))
            else:
                decis.append(str(deci))

        return ",".join(decis)
Exemple #8
0
    Options.PrepareFeatures = False
    Options.PlottingEnabled = True
    Options.TrainDataSize = 1
    Options.TestDataSize = 0
    Options.InputFeaturesPath = ''
    Options.OutputFeaturesPath = ''
    Options.PredictionSaveDirectory = ''

    Options.RegressionAssetName = 'NZDUSD_H4'
    Options.RegressionMethodName = 'HARM_TRIANGULAR'

    if (len(sys.argv) > 1):
        Options.InputFeaturesPath = sys.argv[1]

    if (len(sys.argv) > 2):
        Options.OutputFeaturesPath = sys.argv[2]
        print(sys.argv[1], sys.argv[2])

    if (len(sys.argv) > 3):
        Options.RegressionAssetName = sys.argv[3]

    if (len(sys.argv) > 4):
        Options.RegressionMethodName = sys.argv[4]

    Options.OutputValuesKey = Options.RegressionAssetName + '_RPO'
    Options.OutputDateValuesKey = Options.RegressionAssetName + '_RealClose_date'
    Options.RealClosePricesKey = Options.RegressionAssetName + '_RealClose'

    Options.Init()

    core.run.main()
Exemple #9
0
 def __func(wf_name):
     if running_context.controller.is_workflow_registered(
             playbook_name, wf_name):
         data = request.get_json()
         if 'scheduler' in data:
             enabled = data['scheduler']['enabled'] if 'enabled' in data[
                 'scheduler'] else False
             scheduler = {
                 'type':
                 data['scheduler']['type']
                 if 'type' in data['scheduler'] else 'cron',
                 'autorun': (str(data['scheduler']['autorun']).lower() if
                             'autorun' in data['scheduler'] else 'false'),
                 'args':
                 json.loads(data['scheduler']['args'])
                 if 'args' in data['scheduler'] else {}
             }
             running_context.controller.get_workflow(playbook_name, wf_name).options = \
                 Options(scheduler=scheduler, enabled=enabled)
         if 'new_name' in data and data['new_name']:
             if running_context.controller.is_workflow_registered(
                     playbook_name, data['new_name']):
                 current_app.logger.warning(
                     'Could not update workflow {0}. Workflow already exists.'
                     .format(workflow_name))
                 return {
                     "error": "Workflow already exists."
                 }, OBJECT_EXISTS_ERROR
             else:
                 running_context.controller.update_workflow_name(
                     playbook_name, wf_name, playbook_name,
                     data['new_name'])
                 running_context.Triggers.update_workflow(
                     old_workflow=wf_name, new_workflow=data['new_name'])
                 wf_name = data['new_name']
         workflow = running_context.controller.get_workflow(
             playbook_name, wf_name)
         if workflow:
             returned_json = {
                 'workflow': {
                     'name': wf_name,
                     'options': workflow.options.as_json(),
                     'start': workflow.start_step
                 }
             }
             current_app.logger.info(
                 'Updated workflow {0}-{1} to {2}'.format(
                     playbook_name, wf_name, returned_json))
             return returned_json, SUCCESS
         else:
             current_app.logger.error(
                 'Altered workflow {0}-{1} no longer in controller'.format(
                     playbook_name, wf_name))
             return {
                 'error': 'Altered workflow can no longer be located.'
             }, INVALID_INPUT_ERROR
     else:
         current_app.logger.error(
             'Workflow {0}-{1} not found in controller. Cannot be updated.'.
             format(playbook_name, wf_name))
         return {
             'error': 'Playbook or workflow does not exist.'
         }, OBJECT_DNE_ERROR
Exemple #10
0
def main():
    #

    #FixInterruptHandling().fix()

    #

    if (Options.PrepareFeatures):
        dataPrepared = DataPrepare.run(Options.OutputFeaturesPath,
                                       Options.InputFeaturesPath,
                                       Options.TrainDataStartDate,
                                       Options.FuturePredictionStartDate,
                                       Options.FuturePredictionEndDate())

    #

    output_data_dict_train, output_data_dict_future = DataReader.get_output_features(
    )

    #

    input_data_dict_train, input_data_dict_future = DataReader.get_input_features(
    )

    #
    Options.InputFeatureSize = len(input_data_dict_train.values())

    #

    plotter = Plotter()
    #plotter.plot_date_price(date_values, price_values, Options.RegressionAssetName)

    wave_no = 0
    input1 = list(input_data_dict_train.values())[wave_no]
    #plotter.plot_xy(date_values, input1, list(input_data_dict.keys())[wave_no], 'Dates', 'Power')

    # Construct PDS

    input_pds = pd.DataFrame.from_dict(input_data_dict_train)
    real_close_pds = pd.DataFrame(
        data=output_data_dict_train[Options.RealClosePricesKey])
    output_pds = pd.DataFrame(
        data=output_data_dict_train[Options.OutputValuesKey])
    date_values = output_data_dict_train[Options.OutputDateValuesKey]

    future_input_pds = pd.DataFrame.from_dict(input_data_dict_future)
    future_output_pds, future_real_close_pds, future_date_values = DataReader.get_future_output_features(
        output_data_dict_future)

    # End Construct PDS

    # Data Pre Processor

    pre_processor = DataPreProcessor()
    #output_pds = pre_processor.to_wavelet(output_pds)
    #output_pds = pre_processor.filter_by_savgol(output_pds, 51, 3)

    processor = DataProcessor(input_pds, output_pds, date_values,
                              Options.TrainDataSize, Options.TestDataSize)

    # LAZY LOAD Neural Network lib ?
    from core.nnmodel import NNModel

    ### ONE BY ONE START
    if (Options.DataWindow == Options.DataWindowType.OneByOne):

        x_train_o, y_train_o, date_train = processor.get_one_by_one_data(
            'train',
            seq_len=1,
            multiply_y_vector=Options.MultiplyDataByCustomFactor,
            normalise=Options.NormaliseData)
        x_val_o, y_val_o, date_val = processor.get_one_by_one_data(
            'val',
            seq_len=1,
            multiply_y_vector=Options.MultiplyDataByCustomFactor,
            normalise=Options.NormaliseData)
        model = NNModel()

        model.build_one_by_one_model()
        callbacks = model.get_callbacks(Options.KerasOneByOneEpochs)
        model.fit_one_by_one(x_train_o, y_train_o, x_val_o, y_val_o,
                             Options.KerasOneByOneBatchSize,
                             Options.KerasOneByOneEpochs, callbacks)
        y_train_o_pred = model.predict(x_train_o, 'x_train_o')
        model.save_pred_to_csv(date_train, y_train_o_pred,
                               Options.PredictionSaveDirs(),
                               Options.GetPredictionSaveFileName('train'))

        plotter.plot_different_scale(y_train_o_pred,
                                     y_train_o,
                                     date_train,
                                     y_label1="Train Prediction",
                                     y_label2="Train")

        y_val_pred = model.predict(x_val_o, 'x_val_o')
        model.save_pred_to_csv(date_val, y_val_pred,
                               Options.PredictionSaveDirs(),
                               Options.GetPredictionSaveFileName('val'))
        plotter.plot_different_scale(y_val_pred,
                                     y_val_o,
                                     date_val,
                                     y_label1="Validation Prediction",
                                     y_label2="Validation")

        processor2 = DataProcessor(input_pds, real_close_pds, date_values,
                                   Options.TrainDataSize,
                                   Options.TestDataSize)  #DELETE THIS
        temp, y_test_real, date_real = processor2.get_one_by_one_data(
            'test',
            seq_len=1,
            multiply_y_vector=Options.MultiplyDataByCustomFactor,
            normalise=Options.NormaliseData)  #DELETE THIS

        x_test_o, y_test_o, date_test = processor.get_one_by_one_data(
            'test',
            seq_len=1,
            multiply_y_vector=Options.MultiplyDataByCustomFactor,
            normalise=Options.NormaliseData)
        y_test_o_pred = model.predict(x_test_o, 'x_test_o')
        model.save_pred_to_csv(date_test, y_test_o_pred,
                               Options.PredictionSaveDirs(),
                               Options.GetPredictionSaveFileName('test'))

        plotter.plot_different_scale(y_test_o_pred,
                                     y_test_real,
                                     y_label1="Test Prediction",
                                     y_label2="Real")
        plotter.plot_different_scale(y_test_o_pred,
                                     y_test_o,
                                     date_real,
                                     y_label1="Test Prediction",
                                     y_label2="Real RPO")

        future_pred = model.predict(future_input_pds, 'future_input_pds')
        plotter.plot_different_scale(
            future_pred,
            future_real_close_pds,
            np.array([]),
            y_label1="Future Prediction",
            y_label2="Future Real")  #np.array(future_date_values) throws ex
        model.save_pred_to_csv(np.array(future_date_values), future_pred,
                               Options.PredictionSaveDirs(),
                               Options.GetPredictionSaveFileName('future'))

    ### ONE BY ONE END

    if (Options.DataWindow == Options.DataWindowType.OneByOneTelosSearch):
        from core.nntelossearch import NNTelosSearch

        telosSearch = NNTelosSearch()
        x_train_o, y_train_o = processor.get_train_data_OBO(
            seq_len=1, normalise=Options.NormaliseData)
        telosSearch.minimize(x_train_o, y_train_o, [], [])

    #TELOS END

    if (Options.DataWindow == Options.DataWindowType.WindowBatch):

        #x_train, y_train = processor.get_train_data(seq_len=Options.WindowSequenceLength, normalise = Options.NormaliseData)
        #y_train = y_train * Options.MultiplyDataByCustomFactor
        #x_test, y_test = processor.get_test_data(seq_len = Options.WindowSequenceLength, normalise = Options.NormaliseData)
        #y_test = y_test * Options.MultiplyDataByCustomFactor

        model = NNModel()
        model.build_windowed_batch_model()
        callbacks = model.get_callbacks(Options.KerasWindowedEpochs)

        x_train, y_train, date_train = processor.get_window_train_data(
            arr_type='train',
            seq_len=Options.WindowSequenceLength,
            step=Options.WindowShiftStep,
            feature_len=Options.InputFeatureSize,
            multiply_y_vector=1)

        x_val, y_val, date_val = processor.get_window_train_data(
            arr_type='val',
            seq_len=Options.WindowSequenceLength,
            step=Options.WindowShiftStep,
            feature_len=Options.InputFeatureSize,
            multiply_y_vector=1)

        x_test, y_test, date_test = processor.get_window_train_data(
            arr_type='test',
            seq_len=Options.WindowSequenceLength,
            step=Options.WindowShiftStep,
            feature_len=Options.InputFeatureSize,
            multiply_y_vector=1)

        if (Options.FlattenWindowVector):
            x_train = np.asarray(x_train, dtype=np.float32).reshape(
                -1, Options.WindowSequenceLength * Options.InputFeatureSize)
            x_val = np.asarray(x_val, dtype=np.float32).reshape(
                -1, Options.WindowSequenceLength * Options.InputFeatureSize)
            x_test = np.asarray(x_test, dtype=np.float32).reshape(
                -1, Options.WindowSequenceLength * Options.InputFeatureSize)

        model.fit_one_by_one(x_train, y_train, x_val, y_val,
                             Options.KerasWindowedBatchSize,
                             Options.KerasWindowedEpochs, callbacks)

        if (Options.FlattenWindowVector):
            plotter.plot_different_scale(model.predict(x_train, 'x_train'),
                                         y_train,
                                         date_train,
                                         y_label1="Train Prediction",
                                         y_label2="Train")
            plotter.plot_different_scale(model.predict(x_val, 'x_val'),
                                         y_val,
                                         date_val,
                                         y_label1="Validation Prediction",
                                         y_label2="Validation")
            plotter.plot_different_scale(model.predict(x_test, 'x_test'),
                                         y_test,
                                         date_test,
                                         y_label1="Test Prediction",
                                         y_label2="Test")
        else:
            train_pred_point_by_point = model.predict_point_by_point(x_train)
            plotter.plot_different_scale(train_pred_point_by_point,
                                         y_train,
                                         date_train,
                                         y_label1="Train Prediction",
                                         y_label2="Train")

            test_pred_point_by_point = model.predict_point_by_point(x_test)
            plotter.plot_different_scale(test_pred_point_by_point,
                                         y_test,
                                         date_test,
                                         y_label1="Test Prediction",
                                         y_label2="Real")

    #WINDOW_END

    print("THE_END")
Exemple #11
0
class Plugin(object):

    NAME = ""
    DESCRIPTION = ""
    AUTHORS = []

    def __init__(self, shell):
        self.options = Options()
        self.shell = shell

        self.loader = core.loader

        self.load()

    ''' called when the framework starts '''

    def load(self):
        pass

    ''' called when the plugin is invoked '''

    def run(self):
        pass

    def dispatch(self, workloads, job):
        target = self.options.get("ZOMBIE")
        commas = [x.strip() for x in target.split(",")]

        splitted = []
        for x in commas:
            s = x.split("-")
            if len(s) == 1:
                splitted.append(int(x))
            else:
                splitted.extend(range(int(s[0]), int(s[1]) + 1))

        for server in self.shell.stagers:
            for session in server.sessions:
                if target == "ALL" or int(session.id) in splitted:
                    if server.stager.WORKLOAD in workloads.keys():
                        workload = workloads[server.stager.WORKLOAD]
                        options = copy.deepcopy(self.options)
                        j = job(self.shell, session, self.shell.state,
                                workload, options)
                        session.jobs.append(j)

    def load_payload(self, id):
        try:
            for server in self.shell.stagers:
                if int(server.payload_id) == int(id):
                    return server.get_payload().decode()
        except:
            pass

        return None

    def parse_ips(self, ips):
        import core.cidr
        return core.cidr.get_ips(ips)

    def parse_ports(self, ports):
        import core.cidr
        return core.cidr.get_ports(ports)

    def make_vb_array(self, name, array):
        ret = "dim %s(%d)\n" % (name, len(array) - 1)

        count = 0
        for el in array:
            x = '%s(%d) = "%s"\n' % (name, count, str(el))
            ret += x
            count += 1

        return ret

    def make_js_array(self, name, array):
        array = ['"%s"' % item for item in array]
        ret = "var %s = [%s];" % (name, ", ".join(array))
        return ret

    def random_string(self, length):
        return ''.join(random.SystemRandom().choice(string.ascii_letters +
                                                    string.digits)
                       for n in range(length))

    def validate_shellcode(self, shellcode):
        if len(shellcode) % 2 != 0:
            return False

        return all(c in string.hexdigits for c in shellcode)

    def convert_shellcode(self, shellcode):
        decis = []
        count = 0
        for i in range(0, len(shellcode), 2):
            count += 1
            hexa = shellcode[i:i + 2]
            deci = int(hexa, 16)

            if count % 25 == 0:
                decis.append(" _\\n" + str(deci))
            else:
                decis.append(str(deci))

        return ",".join(decis)
Exemple #12
0
class Plugin(object):

    NAME = ""
    DESCRIPTION = ""
    AUTHORS = []

    def __init__(self, shell):
        self.options = Options()
        self.shell = shell

        self.loader = core.loader

        self.load()

    ''' called when the framework starts '''
    def load(self):
        pass

    ''' called when the plugin is invoked '''
    def run(self):
        pass

    def dispatch(self, workloads, job):
        target = self.options.get("ZOMBIE")
        splitted = [x.strip() for x in target.split(",")]

        for server in self.shell.stagers:
            for session in server.sessions:
                if target == "ALL" or str(session.id) in splitted:
                    if server.stager.WORKLOAD in workloads.keys():
                        workload = workloads[server.stager.WORKLOAD]
                        options = copy.deepcopy(self.options)
                        j = job(self.shell, session, self.shell.state, workload, options)
                        session.jobs.append(j)

    def load_payload(self, id):
        try:
            for server in self.shell.stagers:
                if int(server.payload_id) == int(id):
                    return server.get_payload().decode()
        except:
            pass

        return None

    def parse_ips(self, ips):
        import core.cidr
        return core.cidr.get_ips(ips)

    def parse_ports(self, ports):
        import core.cidr
        return core.cidr.get_ports(ports)

    def make_vb_array(self, name, array):
        ret = "dim %s(%d)\n" % (name, len(array) - 1)

        count = 0
        for el in array:
            x = '%s(%d) = "%s"\n' % (name, count, str(el))
            ret += x
            count += 1

        return ret

    def make_js_array(self, name, array):
        array = ['"%s"' % item for item in array]
        ret = "var %s = [%s];" % (name, ", ".join(array))
        return ret

    def random_string(self, length):
        return ''.join(random.SystemRandom().choice(string.ascii_letters + string.digits) for n in range(length))

    def validate_shellcode(self, shellcode):
        if len(shellcode) % 2 != 0:
            return False

        return all(c in string.hexdigits for c in shellcode)

    def convert_shellcode(self, shellcode):
        decis = []
        count = 0
        for i in range(0, len(shellcode), 2):
            count += 1
            hexa = shellcode[i:i+2]
            deci = int(hexa, 16)

            if count % 25 == 0:
                decis.append(" _\\n" + str(deci))
            else:
                decis.append(str(deci))

        return ",".join(decis)
Exemple #13
0
def workflow(playbook_name, workflow_name, action):
    if action == 'add':
        form = forms.AddWorkflowForm(request.form)
        if form.validate():
            status = 'success'
            template_playbook = form.playbook.data
            template = form.template.data
            if template and template_playbook:
                if template_playbook in [
                        os.path.splitext(workflow)[0] for workflow in
                        locate_workflows_in_directory(config.templatesPath)
                ]:
                    res = running_context.controller.create_workflow_from_template(
                        playbook_name=playbook_name,
                        workflow_name=workflow_name,
                        template_playbook=template_playbook,
                        template_name=template)
                    if not res:
                        add_default_template(playbook_name, workflow_name)
                        status = 'warning: template not found in playbook. Using default template'
                else:
                    add_default_template(playbook_name, workflow_name)
                    status = 'warning: template playbook not found. Using default template'
            else:
                add_default_template(playbook_name, workflow_name)
            if running_context.controller.is_workflow_registered(
                    playbook_name, workflow_name):
                workflow = running_context.controller.get_workflow(
                    playbook_name, workflow_name)
                return json.dumps({
                    'workflow': {
                        'name': workflow_name,
                        'steps': workflow.get_cytoscape_data(),
                        'options': workflow.options.as_json()
                    },
                    'status': status
                })
            else:
                return json.dumps({'status': 'error: could not add workflow'})
        else:
            return json.dumps({'status': 'error: invalid form'})

    elif action == 'edit':
        if running_context.controller.is_workflow_registered(
                playbook_name, workflow_name):
            form = forms.EditPlayNameForm(request.form)
            if form.validate():
                enabled = form.enabled.data if form.enabled.data else False
                scheduler = {
                    'type':
                    form.scheduler_type.data
                    if form.scheduler_type.data else 'chron',
                    'autorun':
                    str(form.autoRun.data).lower()
                    if form.autoRun.data else 'false',
                    'args':
                    json.loads(form.scheduler_args.data)
                    if form.scheduler_args.data else {}
                }
                running_context.controller.get_workflow(playbook_name, workflow_name).options = \
                    Options(scheduler=scheduler, enabled=enabled)
                if form.new_name.data:
                    running_context.controller.update_workflow_name(
                        playbook_name, workflow_name, playbook_name,
                        form.new_name.data)
                    workflow_name = form.new_name.data
                workflow = running_context.controller.get_workflow(
                    playbook_name, workflow_name)
                if workflow:
                    return json.dumps({
                        'workflow': {
                            'name': workflow_name,
                            'options': workflow.options.as_json()
                        },
                        'status': 'success'
                    })
                else:
                    json.dumps({
                        'status':
                        'error: altered workflow can no longer be located'
                    })
            else:
                return json.dumps({'status': 'error: invalid form'})
        else:
            return json.dumps({'status': 'error: workflow name is not valid'})

    elif action == 'save':
        if running_context.controller.is_workflow_registered(
                playbook_name, workflow_name):
            if request.get_json():
                if 'cytoscape' in request.get_json():
                    workflow = running_context.controller.get_workflow(
                        playbook_name, workflow_name)
                    workflow.from_cytoscape_data(
                        json.loads(request.get_json()['cytoscape']))
                    try:
                        write_format = 'w' if sys.version_info[0] == 2 else 'wb'
                        workflow_filename = os.path.join(
                            config.workflowsPath,
                            '{0}.workflow'.format(playbook_name))
                        with open(workflow_filename,
                                  write_format) as workflow_out:
                            xml = ElementTree.tostring(
                                running_context.controller.playbook_to_xml(
                                    playbook_name))
                            workflow_out.write(xml)
                        return json.dumps({
                            "status":
                            "success",
                            "steps":
                            workflow.get_cytoscape_data()
                        })
                    except (OSError, IOError) as e:
                        return json.dumps({
                            "status":
                            "Error saving: {0}".format(e.message),
                            "steps":
                            workflow.get_cytoscape_data()
                        })
                else:
                    return json.dumps({"status": "error: malformed json"})
            else:
                return json.dumps({"status": "error: no information received"})
        else:
            return json.dumps({'status': 'error: workflow name is not valid'})

    elif action == 'delete':
        if running_context.controller.is_workflow_registered(
                playbook_name, workflow_name):
            running_context.controller.removeWorkflow(playbook_name,
                                                      workflow_name)
            status = 'success'
        else:
            status = 'error: invalid workflow name'
        return json.dumps({
            "status":
            status,
            "playbooks":
            running_context.controller.get_all_workflows()
        })

    elif action == 'execute':
        if running_context.controller.is_workflow_registered(
                playbook_name, workflow_name):
            running_context.controller.executeWorkflow(playbook_name,
                                                       workflow_name)
            status = 'success'
        else:
            status = 'error: invalid workflow name'
        return json.dumps({"status": status})

    else:
        return json.dumps({"status": 'error: invalid operation'})