print('Init error')


# Create Data buffer
exp_data = DataBuffer(env, max_trajectory = num_iter_algo*10 +n_rnd,   shaping_state_delta = shaping_state_delta)


# during first n_rnd trials, apply randomized controls
for i in range(n_rnd):
    exp_data.push(rollout(env, randpol, max_steps=T))

#cost_mean ,cost_std = test_episodic_cost(env, policy, N=50, T=T, render=False)


for i in range( num_iter_algo):
    log.infov('-----------------DeepPILCO Iteration # {}-----------------'.format(i+1))
    # Train dynamics
    train_dynamics_model_pilco(dynamics, dynamics_optimizer, exp_data, epochs=num_itr_dyn, batch_size=dyn_batch_size, plot_train=None, pre_process=pre_process)

    # Update policy
    log.infov('Policy optimization...' )

    policy.update_dataset_statistics(exp_data)
    for j in range(num_iter_policy):
        _, list_costs, list_moments = learn_policy_pilco(env, dynamics, policy, policy_optimizer, K=K, T= 1000, gamma=0.99,
                                                   moment_matching=True,   grad_norm = grad_clip, pre_prcess=True , shaping_state_delta= shaping_state_delta)

        # Loggings
        if (j + 1) % log_interval_policy == 1 or (j + 1) == args.num_iter_policy:

            loss_mean = torch.sum( torch.cat(list_costs)) .data.cpu().numpy()[0]
Exemple #2
0
def train_dynamics_model_pilco2(dynamics, dynamics_optimizer, trainset, epochs=1, batch_size=1, eval_fn=None,
                               logger=None, **kwargs):
    # Create dynamics and its optimizer
    dynamics.set_sampling(sampling=False)
    
    log.infov('Dynamics training...')
    # Loss
    #criterion = nn.MSELoss()  # MSE/SmoothL1
    
    dynamics.update_dataset_statistics(trainset)
    
    batch_size = trainset.data.shape[0] if trainset.data.shape[0] < batch_size else batch_size
    # Create Dataloader
    trainloader = Data.DataLoader(trainset, batch_size=batch_size, shuffle=True, drop_last=True)
    
    (_, _), (x_test, y_test) = load_data()
    (_, _), (x_test2, y_test2) = load_data(
        dir_name='/home/drl/PycharmProjects/DeployedProjects/deepPILCO/MB/data/log-test1.csv', data_num=1000)
    
    log.infov('Num of rollout: {} Data set size: {}'.format(len(trainset.buffer), trainset.data.shape[0]))
    #dynamics.set_sampling(sampling= False)
    dynamics.train()
    list_train_loss = []
    for epoch in range(epochs):  # Loop over dataset multiple times
        running_train_losses = []
        
        start_time = time.time()
        for i, data in enumerate(trainloader):  # Loop over batches of data
            # Get input batch
            X, Y = data
            
            
            # Loss
            loss  = dynamics.get_loss( X, Y, pre_prcess = kwargs['pre_process'])
            
            
            # Backward pass
            loss.backward()
            
            # Update params
            dynamics_optimizer.step()
            
            # Accumulate running losses
            running_train_losses.append(loss.data[0])  # Take out value from 1D Tensor
        
        # Record the mean of training and validation losses in the batch
        batch_train_loss = np.mean(running_train_losses)
        list_train_loss.append(batch_train_loss)
        
        time_duration = time.time() - start_time
        # Logging: Only first, middle and last
        
        if epoch % LOG_EVERY_N_EPOCH == 0:
            if dynamics.env.spec.id == 'HalfCheetah-v2':
                eval_mse = plot_train(x_test, y_test, dyn_model=dynamics, pre_process=kwargs['pre_process'], plot=False)
                eval_mse2 = plot_train(x_test2, y_test2, dyn_model=dynamics, pre_process=kwargs['pre_process'],
                                       plot=False)
            # log.info('[Epoch # {:3d} ({:.1f} s)] Train loss: {:.8f} Eval loss1: {:.8f} Eval loss2: {:.8f}'.format(epoch + 1, time_duration, batch_train_loss, eval_mse, eval_mse2))
            else:
                eval_mse = 0
                eval_mse2 = 0
            if logger is not None:
                logger.log({'epoch': epoch,
                            'time_duration': time_duration,
                            'Train loss': batch_train_loss,
                            'Eval loss': eval_mse,
                            'Eval loss_export': eval_mse2,
                            })
                logger.write(display=False)
        
        if epoch == 0 or epoch == epochs // 2 or epoch == epochs - 1 or epoch % 5 == 0:
            log.info(
                '[Epoch # {:3d} ({:.1f} s)] Train loss: {:.8f} Eval loss1: {:.8f} Eval loss2: {:.8f}'.format(epoch + 1,
                                                                                                             time_duration,
                                                                                                             batch_train_loss,
                                                                                                             eval_mse,
                                                                                                             eval_mse2))
        
        if epoch % PLOT_EVERY_N_EPOCH == 0:
            if kwargs['plot_train'] is not None:
                if callable(kwargs['plot_train']):
                    if epoch == 0:
                        plt.ion()
                    kwargs['plot_train'](dynamics)
    
    if logger is not None:
        logger.close()
    log.info('Finished training dynamics model. ')
    return np.array(list_train_loss)
Exemple #3
0
    cost_fn=cost_fn,
    num_simulated_paths=simulated_paths,
    action_noise=action_noise,
    N_SAMPLES=10,
)

# Create Data buffer
exp_data = DataBuffer(
    env, max_trajectory=n_rnd +
    3 * N_MPC)  # num_iter_algo +n_rnd  n_rnd + n_iter_algo* N_MPC

# during first n_rnd trials, apply randomized controls
for i in range(n_rnd):
    exp_data.push(rollout(env, randpol, max_steps=max_timestep))

log.infov(
    '-----------------DeepPILCO Iteration # {}-----------------'.format(i + 1))
#Train dynamics
train_dynamics_model_pilco(dynamics,
                           dynamics_optimizer,
                           exp_data,
                           epochs=num_itr_dyn,
                           batch_size=dyn_batch_size,
                           plot_train=None,
                           pre_process=pre_process)
#dynamics.update_dataset_statistics(exp_data)
# Save model
save_dir = log_dir
utils.save_net_param(dynamics, save_dir, name='dyn_model0', mode='net')

# exp_logger = utils.Logger(log_dir, csvname='exp'  )
# data = np.concatenate((exp_data.buffer[0], exp_data.buffer[1],exp_data.buffer[2],exp_data.buffer[3],exp_data.buffer[4]), axis=0)
Exemple #4
0
def train_dynamics_model_pilco(dynamics, dynamics_optimizer, trainset, epochs=1, batch_size=1, eval_fn=None,logger=None ,**kwargs):
   
   # Create dynamics and its optimizer
    dynamics.set_sampling(sampling=False)
    
    log.infov('Dynamics training...')
    # Loss
    criterion = nn.MSELoss()  # MSE/SmoothL1
    
    dynamics.update_dataset_statistics(trainset)
    
    batch_size = trainset.data.shape[0] if trainset.data.shape[0] < batch_size else batch_size
    # Create Dataloader
    trainloader = Data.DataLoader(trainset, batch_size=batch_size, shuffle=True, drop_last=True)


    
    log.infov('Num of rollout: {} Data set size: {}'.format(len(trainset.buffer), trainset.data.shape[0]))
    dynamics.train()
    list_train_loss = []
    for epoch in range(epochs):  # Loop over dataset multiple times
        running_train_losses = []
        
        start_time = time.time()
        for i, data in enumerate(trainloader):  # Loop over batches of data
            # Get input batch
            X, Y = data
            
            # Wrap data tensors as Variable and send to GPU
            X = Variable(X).cuda()
            Y = Variable(Y).cuda()
            
            # Zero out the parameter gradients
            dynamics_optimizer.zero_grad()
            
            # Forward pass
            outputs = dynamics.predict_Y(X, delta_target=True, pre_prcess=kwargs[
                'pre_process'])  # delta_target, return state difference for training
            
            # Loss
            loss = criterion(outputs, Y)
            M = Y.shape[0]
            N = X.shape[0]

           # loss = gaussian_log_likelihood(Y,outputs)
            
            reg = 0  # dropout_gp_kl(dynamics , input_lengthscale=1.0, hidden_lengthscale=1.0)

           # loss = -loss/M + reg/N
            # Backward pass
            loss.backward()
            
            # Update params
            dynamics_optimizer.step()
            
            # Accumulate running losses
            running_train_losses.append(loss.data[0])  # Take out value from 1D Tensor
        
        # Record the mean of training and validation losses in the batch
        batch_train_loss = np.mean(running_train_losses)
        list_train_loss.append(batch_train_loss)
        
        time_duration = time.time() - start_time
        # Logging: Only first, middle and last
    
        if epoch % LOG_EVERY_N_EPOCH == 0:
            
            if logger is not None:
                logger.log({'epoch': epoch,
                            'time_duration':time_duration,
                            'Train loss': batch_train_loss,
 
                            })
                logger.write(display=False)
            
        if epoch == 0 or epoch == epochs // 2 or epoch == epochs - 1:
            log.info(
                '[Epoch # {:3d} ({:.1f} s)] Train loss: {:.8f}  '.format(epoch + 1,
                                                                                                             time_duration,
                                                                                                             batch_train_loss))

        

    if logger is not None:
        logger.close()
    log.info('Finished training dynamics model. ')
    return np.array(list_train_loss)
Exemple #5
0
                activation=net_activation).cuda()
dynamics_optimizer = torch.optim.Adam(dynamics.parameters(),
                                      lr=lr_dynamics,
                                      weight_decay=dyn_reg2)

# Create random policy
randpol = controller.RandomPolicy(env)

# Create Data buffer
exp_data = DataBuffer(env, max_trajectory=100)

# during first n_rnd trials, apply randomized controls
for i in range(n_rnd):
    exp_data.push(rollout(env, randpol, max_steps=T, render=False))

log.infov('-----------------DeepPILCO Iteration # {}-----------------')

# Train dynamics

train_dynamics_model_pilco(dynamics,
                           dynamics_optimizer,
                           exp_data,
                           epochs=num_itr_dyn,
                           batch_size=dyn_batch_size,
                           plot_train=None,
                           pre_process=pre_process,
                           logger=logger)  #plot_train_ion

# Save model
save_dir = log_dir
utils.save_net_param(dynamics, save_dir, name='dyn_model', mode='net')