def main(_): console.start('Task CNN (MEMBRANE)') th = core.th th.job_dir = './records_unet_alpha' th.model = models.unet th.suffix = '01' th.batch_size = 2 th.learning_rate = 1e-4 th.epoch = 3 th.early_stop = True th.patience = 5 th.print_cycle = 1 th.validation_per_round = 4 th.val_batch_size = 10 th.validate_train_set = True th.export_tensors_upon_validation = True # th.probe_cycle = 1 th.warm_up = False th.save_model = True th.overwrite = True th.gather_note = True th.summary = False th.warm_up_thres = 0 # th.train = False th.mark = 'unet_{}'.format('x') core.activate()
def main(_): console.start('GPAT Classification task (MLP)') # Configurations th = core.th th.model = models.mlp th.num_blocks = 2 th.hidden_dim = 500 th.actype1 = 'relu' th.idle_tol = 30 th.epoch = 500 th.learning_rate = 1e-3 th.batch_size = 64 th.validation_per_round = 1 th.print_cycle = 1 th.shuffle = True # th.train = False th.smart_train = False th.max_bad_apples = 4 th.lr_decay = 0.6 th.save_model = True th.overwrite = True th.export_note = True th.summary = True th.monitor = False description = 'demo' th.mark = 'mlp_{}x{}{}'.format(th.hidden_dim, th.num_blocks, description) core.activate()
def main(_): console.start('MLP task') # Configurations th = core.th th.model = models.mlp th.fc_dims = [800, 500] th.actype1 = 'relu' th.epoch = 50 th.learning_rate = 1e-5 th.batch_size = 64 th.validation_per_round = 2 th.print_cycle = 20 th.shuffle = True # th.train = False th.smart_train = False th.max_bad_apples = 4 th.lr_decay = 0.6 th.save_model = True th.overwrite = True th.export_note = True th.summary = True th.monitor = False description = '' th.mark = 'mlp_{}{}'.format(ms(th.fc_dims), description) export_false = True core.activate(export_false=export_false)
def main(_): console.start('CNN task ') # Configurations th = core.th # th.model = models.conv_test th.model = models.conv_2d_test th.actype1 = 'relu' th.patience = 100 th.epoch = 5000 th.learning_rate = 1e-3 th.batch_size = 64 th.validation_per_round = 1 th.print_cycle = 10 th.shuffle = False # th.train = False th.smart_train = True th.max_bad_apples = 4 th.lr_decay = 0.6 th.save_model = True th.overwrite = True th.export_note = True th.summary = True th.monitor = False th.allow_growth = True # th.gpu_memory_fraction = description = 'conv_2d_add_noise' th.mark = 'cnn_{}x{}{}'.format(th.hidden_dim, th.num_blocks, description) core.activate()
def main(_): console.start('LSTM task') # Configurations th = core.th th.model = models.lstm_test # th.model = models.lstm th.num_blocks = 1 th.memory_depth = 3 th.hidden_dim = 100 th.epoch = 50000 th.learning_rate = 1e-4 th.batch_size = 512 th.num_steps = 100 th.val_preheat = 500 th.validation_per_round = 0 th.validate_cycle = 0 th.print_cycle = 2 th.train = True th.smart_train = False th.max_bad_apples = 4 th.lr_decay = 0.5 th.save_model = True th.overwrite = True th.export_note = True th.summary = False th.monitor = False description = '' th.mark = '{}x{}{}'.format(th.num_blocks, th.memory_depth, description) core.activate()
def main(_): console.start('WHBM task (MLP model)') # Configurations th = core.th th.model = models.mlp th.num_blocks = 2 th.memory_depth = 80 multiplier = 4 th.hidden_dim = th.memory_depth * multiplier th.actype1 = 'relu' th.epoch = 50000 th.learning_rate = 1e-4 th.batch_size = 64 th.validation_per_round = 5 th.print_cycle = 50 th.shuffle = True # th.train = False th.smart_train = True th.max_bad_apples = 4 th.lr_decay = 0.5 th.save_model = True th.overwrite = True th.export_note = True th.summary = True th.monitor = False description = '' th.mark = '{}x[{}x{}]{}'.format(th.num_blocks, th.memory_depth, multiplier, description) core.activate()
def main(_): console.start('basis task') # Configurations th = core.th id = 11 th.job_dir = 'basis_task' th.model = models.multinput_ver_only th.actype1 = 'relu' th.epoch = 5000 th.learning_rate = 1e-3 th.batch_size = 32 th.validation_per_round = 1 th.val_batch_size = th.batch_size th.print_cycle = 20 th.patience = 100 th.shuffle = True # th.train = False th.smart_train = False th.max_bad_apples = 4 th.lr_decay = 0.6 th.rand_over_classes = False th.save_model = True th.overwrite = True th.export_note = True th.summary = True th.monitor = False th.allow_growth = False th.gpu_memory_fraction = 0.3 th.raw_keep_prob = 0.9 th.mfcc_keep_prob = 0.7 th.concat_keep_prob = 0.9 th.fold = 1 # th.shuffle = False th.rand_pos = True th.test_all = True th.val_on_train_set = False th.visible_gpu_id = '1' # description = 'raw_data_mfcc_dropout_{}_random_{}_fold_{}'.format( # th.mfcc_keep_prob, th.concat_keep_prob, th.fold) # description = 'raw_data_mfcc_dropout_{}_{}'.format(th.mfcc_keep_prob, # th.concat_keep_prob) description = 'raw_data_mfcc_model_{}'.format(id) # description = 'raw_data_mfcc_simlified_dropout_0.7_reg_0.2_sap_all' th.mark = 'cnn_{}'.format(description) export_false = True core.activate()
def main(_): console.start('Multinput task') # Configurations th = core.th th.job_dir = 'res_task' th.model = models.res_00 th.actype1 = 'relu' th.epoch = 5000 th.learning_rate = 1e-3 th.batch_size = 32 th.validation_per_round = 1 th.val_batch_size = th.batch_size th.print_cycle = 20 th.patience = 100 th.shuffle = True # th.train = False th.smart_train = False th.max_bad_apples = 4 th.lr_decay = 0.6 th.rand_over_classes = False th.save_model = True th.overwrite = True th.export_note = True th.summary = True th.monitor = False th.allow_growth = False th.gpu_memory_fraction = 0.4 th.raw_keep_prob = 0.9 th.mfcc_keep_prob = 0.7 th.concat_keep_prob = 0.9 th.fold = 0 # th.shuffle = False th.rand_pos = True th.visible_gpu_id = '0' # description = 'cnn_raw_data_mfcc_random_rand' description = 'raw_data_mfcc_dropout_{}_{}'.format(th.mfcc_keep_prob, th.concat_keep_prob) th.mark = 'cnn_{}'.format(description) export_false = True core.activate()
def main(_): console.start('LSTM task on GPAT') core.train_size = 50 core.val_size = 4 core.batches_per_epoch = 1000 # Configurations th = core.th th.job_dir = core.from_gpat('lstm_task') th.model = models.lstm0 th.input_shape = [1000] input_dim = th.input_shape[0] # th.rc_dims = [1000, 41] th.rc_dims = [500] th.fc_dims = [] th.epoch = 1000 th.learning_rate = 0.1 th.batch_size = 20 th.num_steps = 4 th.validate_cycle = 200 # th.validation_per_round = 10 th.print_cycle = 1 th.notify_when_reset = True th.early_stop = True th.idle_tol = 50 # th.train = False # th.overwrite = True th.save_model = True th.export_note = True th.summary = True th.monitor = False description = '_t{}v{}lr{}'.format(core.train_size, core.val_size, th.learning_rate) th.mark = 'i{}_rc({})_s{}_bs{}'.format(input_dim, ms(th.rc_dims), th.num_steps, th.batch_size) if len(th.fc_dims) > 0: th.mark += '_fc({})'.format(ms(th.fc_dims)) th.mark += description core.activate()
def main(_): console.start('FC-LSTM task on GPAT') core.train_size = 8 core.val_size = 2 # Configurations th = core.th th.job_dir = core.from_gpat('fc_records') th.model = models.fc_lstm th.input_shape = [2000] input_dim = th.input_shape[0] th.fc_dims = [1000] th.rc_dims = [41] th.epoch = 1000 th.learning_rate = 0.1 th.batch_size = 1 th.num_steps = 10 # th.validate_cycle = 100 th.validation_per_round = 2 th.print_cycle = 1 th.notify_when_reset = True th.early_stop = True th.idle_tol = 50 # th.train = False th.overwrite = True th.save_model = True th.export_note = True th.summary = True th.monitor = False description = '_t8v2_0' th.mark = 'i{}_fc({})_rc({})'.format( input_dim, ms(th.fc_dims), ms(th.rc_dims)) th.mark += description core.activate()