Exemple #1
0
def analyze_gnmax_conf_data_ind(votes, threshold, sigma1, sigma2, delta):
    orders = np.logspace(np.log10(1.5), np.log10(500), num=100)
    n = votes.shape[0]

    rdp_total = np.zeros(len(orders))
    answered_total = 0
    answered = np.zeros(n)
    eps_cum = np.full(n, None, dtype=float)

    for i in range(n):
        v = votes[i, ]
        if threshold is not None and sigma1 is not None:
            q_step1 = np.exp(pate.compute_logpr_answered(threshold, sigma1, v))
            rdp_total += pate.rdp_data_independent_gaussian(sigma1, orders)
        else:
            q_step1 = 1.  # always answer

        answered_total += q_step1
        answered[i] = answered_total

        rdp_total += q_step1 * pate.rdp_data_independent_gaussian(
            sigma2, orders)

        eps_cum[i], order_opt = pate.compute_eps_from_delta(
            orders, rdp_total, delta)

        if i > 0 and (i + 1) % 1000 == 0:
            print('queries = {}, E[answered] = {:.2f}, E[eps] = {:.3f} '
                  'at order = {:.2f}.'.format(i + 1, answered[i], eps_cum[i],
                                              order_opt))
            sys.stdout.flush()

    return eps_cum, answered
Exemple #2
0
def analyze_gnmax_conf_data_ind(votes, threshold, sigma1, sigma2, delta):
  orders = np.logspace(np.log10(1.5), np.log10(500), num=100)
  n = votes.shape[0]

  rdp_total = np.zeros(len(orders))
  answered_total = 0
  answered = np.zeros(n)
  eps_cum = np.full(n, None, dtype=float)

  for i in range(n):
    v = votes[i,]
    if threshold is not None and sigma1 is not None:
      q_step1 = np.exp(pate.compute_logpr_answered(threshold, sigma1, v))
      rdp_total += pate.rdp_data_independent_gaussian(sigma1, orders)
    else:
      q_step1 = 1.  # always answer

    answered_total += q_step1
    answered[i] = answered_total

    rdp_total += q_step1 * pate.rdp_data_independent_gaussian(sigma2, orders)

    eps_cum[i], order_opt = pate.compute_eps_from_delta(orders, rdp_total,
                                                        delta)

    if i > 0 and (i + 1) % 1000 == 0:
      print('queries = {}, E[answered] = {:.2f}, E[eps] = {:.3f} '
            'at order = {:.2f}.'.format(
          i + 1,
          answered[i],
          eps_cum[i],
          order_opt))
      sys.stdout.flush()

  return eps_cum, answered
Exemple #3
0
def scatter_plot(votes, threshold, sigma1, sigma2, order):
  fig, ax = setup_plot()
  x = []
  y = []
  for i, v in enumerate(votes):
    if threshold is not None and sigma1 is not None:
      q_step1 = math.exp(pate.compute_logpr_answered(threshold, sigma1, v))
    else:
      q_step1 = 1.
    if random.random() < q_step1:
      logq_step2 = pate.compute_logq_gaussian(v, sigma2)
      x.append(max(v))
      y.append(pate.rdp_gaussian(logq_step2, sigma2, order))

  print('Selected {} queries.'.format(len(x)))
  # Plot the data-independent curve:
  # data_ind = pate.rdp_data_independent_gaussian(sigma, order)
  # plt.plot([0, 5000], [data_ind, data_ind], color='tab:blue', linestyle='-', linewidth=2)
  ax.set_yscale('log')
  plt.xlim(xmin=0, xmax=5000)
  plt.ylim(ymin=1e-300, ymax=1)
  plt.yticks([1, 1e-100, 1e-200, 1e-300])
  plt.scatter(x, y, s=1, alpha=0.5)
  plt.ylabel(r'RDP at $\alpha={}$'.format(order), fontsize=16)
  plt.xlabel(r'max count', fontsize=16)
  ax.tick_params(labelsize=14)
  plt.show()
Exemple #4
0
def compute_expected_answered_per_bin(bin_num, votes, threshold, sigma1):
  """Computes expected number of answers per bin.

  Args:
    bin_num: Number of bins.
    votes: A matrix of votes, where each row contains votes in one instance.
    threshold: The threshold against which check is performed.
    sigma1: The std of the Gaussian noise with which check is performed. (Same
      as sigma_1 in Algorithms 1 and 2.)

  Returns:
    Expected number of queries answered per bin.
  """
  n = votes.shape[0]

  bin_answered = np.zeros(bin_num)

  for i in xrange(n):
    v = votes[i,]
    p = math.exp(pate.compute_logpr_answered(threshold, sigma1, v))
    bin_idx = int(math.floor(max(v) * bin_num / sum(v)))
    assert 0 <= bin_idx < bin_num
    bin_answered[bin_idx] += p
    if (i + 1) % 1000 == 0:
      print('example {}'.format(i + 1))
      sys.stdout.flush()

  return bin_answered
Exemple #5
0
def scatter_plot(votes, threshold, sigma1, sigma2, order):
  fig, ax = setup_plot()
  x = []
  y = []
  for i, v in enumerate(votes):
    if threshold is not None and sigma1 is not None:
      q_step1 = math.exp(pate.compute_logpr_answered(threshold, sigma1, v))
    else:
      q_step1 = 1.
    if random.random() < q_step1:
      logq_step2 = pate.compute_logq_gaussian(v, sigma2)
      x.append(max(v))
      y.append(pate.rdp_gaussian(logq_step2, sigma2, order))

  print('Selected {} queries.'.format(len(x)))
  # Plot the data-independent curve:
  # data_ind = pate.rdp_data_independent_gaussian(sigma, order)
  # plt.plot([0, 5000], [data_ind, data_ind], color='tab:blue', linestyle='-', linewidth=2)
  ax.set_yscale('log')
  plt.xlim(xmin=0, xmax=5000)
  plt.ylim(ymin=1e-300, ymax=1)
  plt.yticks([1, 1e-100, 1e-200, 1e-300])
  plt.scatter(x, y, s=1, alpha=0.5)
  plt.ylabel(r'RDP at $\alpha={}$'.format(order), fontsize=16)
  plt.xlabel(r'max count', fontsize=16)
  ax.tick_params(labelsize=14)
  plt.show()
Exemple #6
0
def _compute_rdp(votes, baseline, threshold, sigma1, sigma2, delta, orders,
                 data_ind):
    """Computes the (data-dependent) RDP curve for Confident GNMax."""
    rdp_cum = np.zeros(len(orders))
    rdp_sqrd_cum = np.zeros(len(orders))
    answered = 0

    for i, v in enumerate(votes):
        if threshold is None:
            logq_step1 = 0  # No thresholding, always proceed to step 2.
            rdp_step1 = np.zeros(len(orders))
        else:
            logq_step1 = pate.compute_logpr_answered(threshold, sigma1,
                                                     v - baseline[i, ])
            if data_ind:
                rdp_step1 = pate.compute_rdp_data_independent_threshold(
                    sigma1, orders)
            else:
                rdp_step1 = pate.compute_rdp_threshold(logq_step1, sigma1,
                                                       orders)

        if data_ind:
            rdp_step2 = pate.rdp_data_independent_gaussian(sigma2, orders)
        else:
            logq_step2 = pate.compute_logq_gaussian(v, sigma2)
            rdp_step2 = pate.rdp_gaussian(logq_step2, sigma2, orders)

        q_step1 = np.exp(logq_step1)
        rdp = rdp_step1 + rdp_step2 * q_step1
        # The expression below evaluates
        #     E[(cost_of_step_1 + Bernoulli(pr_of_step_2) * cost_of_step_2)^2]
        rdp_sqrd = (rdp_step1**2 + 2 * rdp_step1 * q_step1 * rdp_step2 +
                    q_step1 * rdp_step2**2)
        rdp_sqrd_cum += rdp_sqrd

        rdp_cum += rdp
        answered += q_step1
        if ((i + 1) % 1000 == 0) or (i == votes.shape[0] - 1):
            rdp_var = rdp_sqrd_cum / i - (rdp_cum /
                                          i)**2  # Ignore Bessel's correction.
            eps_total, order_opt = pate.compute_eps_from_delta(
                orders, rdp_cum, delta)
            order_opt_idx = np.searchsorted(orders, order_opt)
            eps_std = ((i + 1) * rdp_var[order_opt_idx])**.5  # Std of the sum.
            print(
                'queries = {}, E[answered] = {:.2f}, E[eps] = {:.3f} (std = {:.5f}) '
                'at order = {:.2f} (contribution from delta = {:.3f})'.format(
                    i + 1, answered, eps_total, eps_std, order_opt,
                    -math.log(delta) / (order_opt - 1)))
            sys.stdout.flush()

        _, order_opt = pate.compute_eps_from_delta(orders, rdp_cum, delta)

    return order_opt
def _compute_rdp(votes, baseline, threshold, sigma1, sigma2, delta, orders,
                 data_ind):
  """Computes the (data-dependent) RDP curve for Confident GNMax."""
  rdp_cum = np.zeros(len(orders))
  rdp_sqrd_cum = np.zeros(len(orders))
  answered = 0

  for i, v in enumerate(votes):
    if threshold is None:
      logq_step1 = 0  # No thresholding, always proceed to step 2.
      rdp_step1 = np.zeros(len(orders))
    else:
      logq_step1 = pate.compute_logpr_answered(threshold, sigma1,
                                               v - baseline[i,])
      if data_ind:
        rdp_step1 = pate.compute_rdp_data_independent_threshold(sigma1, orders)
      else:
        rdp_step1 = pate.compute_rdp_threshold(logq_step1, sigma1, orders)

    if data_ind:
      rdp_step2 = pate.rdp_data_independent_gaussian(sigma2, orders)
    else:
      logq_step2 = pate.compute_logq_gaussian(v, sigma2)
      rdp_step2 = pate.rdp_gaussian(logq_step2, sigma2, orders)

    q_step1 = np.exp(logq_step1)
    rdp = rdp_step1 + rdp_step2 * q_step1
    # The expression below evaluates
    #     E[(cost_of_step_1 + Bernoulli(pr_of_step_2) * cost_of_step_2)^2]
    rdp_sqrd = (
        rdp_step1**2 + 2 * rdp_step1 * q_step1 * rdp_step2 +
        q_step1 * rdp_step2**2)
    rdp_sqrd_cum += rdp_sqrd

    rdp_cum += rdp
    answered += q_step1
    if ((i + 1) % 1000 == 0) or (i == votes.shape[0] - 1):
      rdp_var = rdp_sqrd_cum / i - (
          rdp_cum / i)**2  # Ignore Bessel's correction.
      eps_total, order_opt = pate.compute_eps_from_delta(orders, rdp_cum, delta)
      order_opt_idx = np.searchsorted(orders, order_opt)
      eps_std = ((i + 1) * rdp_var[order_opt_idx])**.5  # Std of the sum.
      print(
          'queries = {}, E[answered] = {:.2f}, E[eps] = {:.3f} (std = {:.5f}) '
          'at order = {:.2f} (contribution from delta = {:.3f})'.format(
              i + 1, answered, eps_total, eps_std, order_opt,
              -math.log(delta) / (order_opt - 1)))
      sys.stdout.flush()

    _, order_opt = pate.compute_eps_from_delta(orders, rdp_cum, delta)

  return order_opt
Exemple #8
0
def compute_rdp_curve(votes, threshold, sigma1, sigma2, orders,
    target_answered):
  rdp_cum = np.zeros(len(orders))
  answered = 0
  for i, v in enumerate(votes):
    v = sorted(v, reverse=True)
    q_step1 = math.exp(pate.compute_logpr_answered(threshold, sigma1, v))
    logq_step2 = pate.compute_logq_gaussian(v, sigma2)
    rdp = pate.rdp_gaussian(logq_step2, sigma2, orders)
    rdp_cum += q_step1 * rdp

    answered += q_step1
    if answered >= target_answered:
      print('Processed {} queries to answer {}.'.format(i, target_answered))
      return rdp_cum

  assert False, 'Never reached {} answered queries.'.format(target_answered)
Exemple #9
0
def compute_rdp_curve(votes, threshold, sigma1, sigma2, orders,
    target_answered):
  rdp_cum = np.zeros(len(orders))
  answered = 0
  for i, v in enumerate(votes):
    v = sorted(v, reverse=True)
    q_step1 = math.exp(pate.compute_logpr_answered(threshold, sigma1, v))
    logq_step2 = pate.compute_logq_gaussian(v, sigma2)
    rdp = pate.rdp_gaussian(logq_step2, sigma2, orders)
    rdp_cum += q_step1 * rdp

    answered += q_step1
    if answered >= target_answered:
      print('Processed {} queries to answer {}.'.format(i, target_answered))
      return rdp_cum

  assert False, 'Never reached {} answered queries.'.format(target_answered)
Exemple #10
0
def run_analysis(votes, mechanism, noise_scale, params):
  """Computes data-dependent privacy.

  Args:
    votes: A matrix of votes, where each row contains votes in one instance.
    mechanism: A name of the mechanism ('lnmax', 'gnmax', or 'gnmax_conf')
    noise_scale: A mechanism privacy parameter.
    params: Other privacy parameters.

  Returns:
    Four lists: cumulative privacy cost epsilon, how privacy budget is split,
    how many queries were answered, optimal order.
  """

  def compute_partition(order_opt, eps):
    order_opt_idx = np.searchsorted(orders, order_opt)
    if mechanism == 'gnmax_conf':
      p = (rdp_select_cum[order_opt_idx],
           rdp_cum[order_opt_idx] - rdp_select_cum[order_opt_idx],
           -math.log(delta) / (order_opt - 1))
    else:
      p = (rdp_cum[order_opt_idx], -math.log(delta) / (order_opt - 1))
    return [x / eps for x in p]  # Ensures that sum(x) == 1

  # Short list of orders.
  # orders = np.round(np.concatenate((np.arange(2, 50 + 1, 1),
  #                   np.logspace(np.log10(50), np.log10(1000), num=20))))

  # Long list of orders.
  orders = np.concatenate((np.arange(2, 100 + 1, .5),
                           np.logspace(np.log10(100), np.log10(500), num=100)))
  delta = 1e-8

  n = votes.shape[0]
  eps_total = np.zeros(n)
  partition = [None] * n
  order_opt = np.full(n, np.nan, dtype=float)
  answered = np.zeros(n, dtype=float)

  rdp_cum = np.zeros(len(orders))
  rdp_sqrd_cum = np.zeros(len(orders))
  rdp_select_cum = np.zeros(len(orders))
  answered_sum = 0

  for i in range(n):
    v = votes[i,]
    if mechanism == 'lnmax':
      logq_lnmax = pate.compute_logq_laplace(v, noise_scale)
      rdp_query = pate.rdp_pure_eps(logq_lnmax, 2. / noise_scale, orders)
      rdp_sqrd = rdp_query ** 2
      pr_answered = 1
    elif mechanism == 'gnmax':
      logq_gmax = pate.compute_logq_gaussian(v, noise_scale)
      rdp_query = pate.rdp_gaussian(logq_gmax, noise_scale, orders)
      rdp_sqrd = rdp_query ** 2
      pr_answered = 1
    elif mechanism == 'gnmax_conf':
      logq_step1 = pate.compute_logpr_answered(params['t'], params['sigma1'], v)
      logq_step2 = pate.compute_logq_gaussian(v, noise_scale)
      q_step1 = np.exp(logq_step1)
      logq_step1_min = min(logq_step1, math.log1p(-q_step1))
      rdp_gnmax_step1 = pate.rdp_gaussian(logq_step1_min,
                                          2 ** .5 * params['sigma1'], orders)
      rdp_gnmax_step2 = pate.rdp_gaussian(logq_step2, noise_scale, orders)
      rdp_query = rdp_gnmax_step1 + q_step1 * rdp_gnmax_step2
      # The expression below evaluates
      #     E[(cost_of_step_1 + Bernoulli(pr_of_step_2) * cost_of_step_2)^2]
      rdp_sqrd = (
          rdp_gnmax_step1 ** 2 + 2 * rdp_gnmax_step1 * q_step1 * rdp_gnmax_step2
          + q_step1 * rdp_gnmax_step2 ** 2)
      rdp_select_cum += rdp_gnmax_step1
      pr_answered = q_step1
    else:
      raise ValueError(
          'Mechanism must be one of ["lnmax", "gnmax", "gnmax_conf"]')

    rdp_cum += rdp_query
    rdp_sqrd_cum += rdp_sqrd
    answered_sum += pr_answered

    answered[i] = answered_sum
    eps_total[i], order_opt[i] = pate.compute_eps_from_delta(
        orders, rdp_cum, delta)
    partition[i] = compute_partition(order_opt[i], eps_total[i])

    if i > 0 and (i + 1) % 1000 == 0:
      rdp_var = rdp_sqrd_cum / i - (
          rdp_cum / i) ** 2  # Ignore Bessel's correction.
      order_opt_idx = np.searchsorted(orders, order_opt[i])
      eps_std = ((i + 1) * rdp_var[order_opt_idx]) ** .5  # Std of the sum.
      print(
          'queries = {}, E[answered] = {:.2f}, E[eps] = {:.3f} (std = {:.5f}) '
          'at order = {:.2f} (contribution from delta = {:.3f})'.format(
              i + 1, answered_sum, eps_total[i], eps_std, order_opt[i],
              -math.log(delta) / (order_opt[i] - 1)))
      sys.stdout.flush()

  return eps_total, partition, answered, order_opt
Exemple #11
0
def analyze_gnmax_conf_data_dep(votes, threshold, sigma1, sigma2, delta):
    # Short list of orders.
    # orders = np.round(np.logspace(np.log10(20), np.log10(200), num=20))

    # Long list of orders.
    orders = np.concatenate((np.arange(20, 40, .2), np.arange(40, 75, .5),
                             np.logspace(np.log10(75), np.log10(200), num=20)))

    n = votes.shape[0]
    num_classes = votes.shape[1]
    num_teachers = int(sum(votes[0, ]))

    if threshold is not None and sigma1 is not None:
        is_data_ind_step1 = pate.is_data_independent_always_opt_gaussian(
            num_teachers, num_classes, sigma1, orders)
    else:
        is_data_ind_step1 = [True] * len(orders)

    is_data_ind_step2 = pate.is_data_independent_always_opt_gaussian(
        num_teachers, num_classes, sigma2, orders)

    eps_partitioned = np.full(n, None, dtype=Partition)
    order_opt = np.full(n, None, dtype=float)
    ss_std_opt = np.full(n, None, dtype=float)
    answered = np.zeros(n)

    rdp_step1_total = np.zeros(len(orders))
    rdp_step2_total = np.zeros(len(orders))

    ls_total = np.zeros((len(orders), num_teachers))
    answered_total = 0

    for i in range(n):
        v = votes[i, ]

        if threshold is not None and sigma1 is not None:
            logq_step1 = pate.compute_logpr_answered(threshold, sigma1, v)
            rdp_step1_total += pate.compute_rdp_threshold(
                logq_step1, sigma1, orders)
        else:
            logq_step1 = 0.  # always answer

        pr_answered = np.exp(logq_step1)
        logq_step2 = pate.compute_logq_gaussian(v, sigma2)
        rdp_step2_total += pr_answered * pate.rdp_gaussian(
            logq_step2, sigma2, orders)

        answered_total += pr_answered

        rdp_ss = np.zeros(len(orders))
        ss_std = np.zeros(len(orders))

        for j, order in enumerate(orders):
            if not is_data_ind_step1[j]:
                ls_step1 = pate_ss.compute_local_sensitivity_bounds_threshold(
                    v, num_teachers, threshold, sigma1, order)
            else:
                ls_step1 = np.full(num_teachers, 0, dtype=float)

            if not is_data_ind_step2[j]:
                ls_step2 = pate_ss.compute_local_sensitivity_bounds_gnmax(
                    v, num_teachers, sigma2, order)
            else:
                ls_step2 = np.full(num_teachers, 0, dtype=float)

            ls_total[j, ] += ls_step1 + pr_answered * ls_step2

            beta_ss = .49 / order

            ss = pate_ss.compute_discounted_max(beta_ss, ls_total[j, ])
            sigma_ss = ((order * math.exp(2 * beta_ss)) / ss)**(1 / 3)
            rdp_ss[j] = pate_ss.compute_rdp_of_smooth_sensitivity_gaussian(
                beta_ss, sigma_ss, order)
            ss_std[j] = ss * sigma_ss

        rdp_total = rdp_step1_total + rdp_step2_total + rdp_ss

        answered[i] = answered_total
        _, order_opt[i] = pate.compute_eps_from_delta(orders, rdp_total, delta)
        order_idx = np.searchsorted(orders, order_opt[i])

        # Since optimal orders are always non-increasing, shrink orders array
        # and all cumulative arrays to speed up computation.
        if order_idx < len(orders):
            orders = orders[:order_idx + 1]
            rdp_step1_total = rdp_step1_total[:order_idx + 1]
            rdp_step2_total = rdp_step2_total[:order_idx + 1]

        eps_partitioned[i] = Partition(step1=rdp_step1_total[order_idx],
                                       step2=rdp_step2_total[order_idx],
                                       ss=rdp_ss[order_idx],
                                       delta=-math.log(delta) /
                                       (order_opt[i] - 1))
        ss_std_opt[i] = ss_std[order_idx]
        if i > 0 and (i + 1) % 1 == 0:
            print(
                'queries = {}, E[answered] = {:.2f}, E[eps] = {:.3f} +/- {:.3f} '
                'at order = {:.2f}. Contributions: delta = {:.3f}, step1 = {:.3f}, '
                'step2 = {:.3f}, ss = {:.3f}'.format(
                    i + 1, answered[i], sum(eps_partitioned[i]), ss_std_opt[i],
                    order_opt[i], eps_partitioned[i].delta,
                    eps_partitioned[i].step1, eps_partitioned[i].step2,
                    eps_partitioned[i].ss))
            sys.stdout.flush()

    return eps_partitioned, answered, ss_std_opt, order_opt
Exemple #12
0
def analyze_gnmax_conf_data_dep(votes, threshold, sigma1, sigma2, delta):
  # Short list of orders.
  # orders = np.round(np.logspace(np.log10(20), np.log10(200), num=20))

  # Long list of orders.
  orders = np.concatenate((np.arange(20, 40, .2),
                           np.arange(40, 75, .5),
                            np.logspace(np.log10(75), np.log10(200), num=20)))

  n = votes.shape[0]
  num_classes = votes.shape[1]
  num_teachers = int(sum(votes[0,]))

  if threshold is not None and sigma1 is not None:
    is_data_ind_step1 = pate.is_data_independent_always_opt_gaussian(
        num_teachers, num_classes, sigma1, orders)
  else:
    is_data_ind_step1 = [True] * len(orders)

  is_data_ind_step2 = pate.is_data_independent_always_opt_gaussian(
      num_teachers, num_classes, sigma2, orders)

  eps_partitioned = np.full(n, None, dtype=Partition)
  order_opt = np.full(n, None, dtype=float)
  ss_std_opt = np.full(n, None, dtype=float)
  answered = np.zeros(n)

  rdp_step1_total = np.zeros(len(orders))
  rdp_step2_total = np.zeros(len(orders))

  ls_total = np.zeros((len(orders), num_teachers))
  answered_total = 0

  for i in range(n):
    v = votes[i,]

    if threshold is not None and sigma1 is not None:
      logq_step1 = pate.compute_logpr_answered(threshold, sigma1, v)
      rdp_step1_total += pate.compute_rdp_threshold(logq_step1, sigma1, orders)
    else:
      logq_step1 = 0.  # always answer

    pr_answered = np.exp(logq_step1)
    logq_step2 = pate.compute_logq_gaussian(v, sigma2)
    rdp_step2_total += pr_answered * pate.rdp_gaussian(logq_step2, sigma2,
                                                       orders)

    answered_total += pr_answered

    rdp_ss = np.zeros(len(orders))
    ss_std = np.zeros(len(orders))

    for j, order in enumerate(orders):
      if not is_data_ind_step1[j]:
        ls_step1 = pate_ss.compute_local_sensitivity_bounds_threshold(v,
            num_teachers, threshold, sigma1, order)
      else:
        ls_step1 = np.full(num_teachers, 0, dtype=float)

      if not is_data_ind_step2[j]:
        ls_step2 = pate_ss.compute_local_sensitivity_bounds_gnmax(
            v, num_teachers, sigma2, order)
      else:
        ls_step2 = np.full(num_teachers, 0, dtype=float)

      ls_total[j,] += ls_step1 + pr_answered * ls_step2

      beta_ss = .49 / order

      ss = pate_ss.compute_discounted_max(beta_ss, ls_total[j,])
      sigma_ss = ((order * math.exp(2 * beta_ss)) / ss) ** (1 / 3)
      rdp_ss[j] = pate_ss.compute_rdp_of_smooth_sensitivity_gaussian(
          beta_ss, sigma_ss, order)
      ss_std[j] = ss * sigma_ss

    rdp_total = rdp_step1_total + rdp_step2_total + rdp_ss

    answered[i] = answered_total
    _, order_opt[i] = pate.compute_eps_from_delta(orders, rdp_total, delta)
    order_idx = np.searchsorted(orders, order_opt[i])

    # Since optimal orders are always non-increasing, shrink orders array
    # and all cumulative arrays to speed up computation.
    if order_idx < len(orders):
      orders = orders[:order_idx + 1]
      rdp_step1_total = rdp_step1_total[:order_idx + 1]
      rdp_step2_total = rdp_step2_total[:order_idx + 1]

    eps_partitioned[i] = Partition(step1=rdp_step1_total[order_idx],
                                   step2=rdp_step2_total[order_idx],
                                   ss=rdp_ss[order_idx],
                                   delta=-math.log(delta) / (order_opt[i] - 1))
    ss_std_opt[i] = ss_std[order_idx]
    if i > 0 and (i + 1) % 1 == 0:
      print('queries = {}, E[answered] = {:.2f}, E[eps] = {:.3f} +/- {:.3f} '
            'at order = {:.2f}. Contributions: delta = {:.3f}, step1 = {:.3f}, '
            'step2 = {:.3f}, ss = {:.3f}'.format(
          i + 1,
          answered[i],
          sum(eps_partitioned[i]),
          ss_std_opt[i],
          order_opt[i],
          eps_partitioned[i].delta,
          eps_partitioned[i].step1,
          eps_partitioned[i].step2,
          eps_partitioned[i].ss))
      sys.stdout.flush()

  return eps_partitioned, answered, ss_std_opt, order_opt
Exemple #13
0
def _find_optimal_smooth_sensitivity_parameters(votes, baseline, num_teachers,
                                                threshold, sigma1, sigma2,
                                                delta, ind_step1, ind_step2,
                                                order):
    """Optimizes smooth sensitivity parameters by minimizing a cost function.

  The cost function is
        exact_eps + cost of GNSS + two stds of noise,
  which captures that upper bound of the confidence interval of the sanitized
  privacy budget.

  Since optimization is done with full view of sensitive data, the results
  cannot be released.
  """
    rdp_cum = 0
    answered_cum = 0
    ls_cum = 0

    # Define a plausible range for the beta values.
    betas = np.arange(.3 / order, .495 / order, .01 / order)
    cost_delta = math.log(1 / delta) / (order - 1)

    for i, v in enumerate(votes):
        if threshold is None:
            log_pr_answered = 0
            rdp1 = 0
            ls_step1 = np.zeros(num_teachers)
        else:
            log_pr_answered = pate.compute_logpr_answered(
                threshold, sigma1, v - baseline[i, ])
            if ind_step1:  # apply data-independent bound for step 1 (thresholding).
                rdp1 = pate.compute_rdp_data_independent_threshold(
                    sigma1, order)
                ls_step1 = np.zeros(num_teachers)
            else:
                rdp1 = pate.compute_rdp_threshold(log_pr_answered, sigma1,
                                                  order)
                ls_step1 = pate_ss.compute_local_sensitivity_bounds_threshold(
                    v - baseline[i, ], num_teachers, threshold, sigma1, order)

        pr_answered = math.exp(log_pr_answered)
        answered_cum += pr_answered

        if ind_step2:  # apply data-independent bound for step 2 (GNMax).
            rdp2 = pate.rdp_data_independent_gaussian(sigma2, order)
            ls_step2 = np.zeros(num_teachers)
        else:
            logq_step2 = pate.compute_logq_gaussian(v, sigma2)
            rdp2 = pate.rdp_gaussian(logq_step2, sigma2, order)
            # Compute smooth sensitivity.
            ls_step2 = pate_ss.compute_local_sensitivity_bounds_gnmax(
                v, num_teachers, sigma2, order)

        rdp_cum += rdp1 + pr_answered * rdp2
        ls_cum += ls_step1 + pr_answered * ls_step2  # Expected local sensitivity.

        if ind_step1 and ind_step2:
            # Data-independent bounds.
            cost_opt, beta_opt, ss_opt, sigma_ss_opt = None, 0., 0., np.inf
        else:
            # Data-dependent bounds.
            cost_opt, beta_opt, ss_opt, sigma_ss_opt = np.inf, None, None, None

            for beta in betas:
                ss = pate_ss.compute_discounted_max(beta, ls_cum)

                # Solution to the minimization problem:
                #   min_sigma {order * exp(2 * beta)/ sigma^2 + 2 * ss * sigma}
                sigma_ss = ((order * math.exp(2 * beta)) / ss)**(1 / 3)
                cost_ss = pate_ss.compute_rdp_of_smooth_sensitivity_gaussian(
                    beta, sigma_ss, order)

                # Cost captures exact_eps + cost of releasing SS + two stds of noise.
                cost = rdp_cum + cost_ss + 2 * ss * sigma_ss
                if cost < cost_opt:
                    cost_opt, beta_opt, ss_opt, sigma_ss_opt = cost, beta, ss, sigma_ss

        if ((i + 1) % 100 == 0) or (i == votes.shape[0] - 1):
            eps_before_ss = rdp_cum + cost_delta
            eps_with_ss = (eps_before_ss +
                           pate_ss.compute_rdp_of_smooth_sensitivity_gaussian(
                               beta_opt, sigma_ss_opt, order))
            print(
                '{}: E[answered queries] = {:.1f}, RDP at {} goes from {:.3f} to '
                '{:.3f} +/- {:.3f} (ss = {:.4}, beta = {:.4f}, sigma_ss = {:.3f})'
                .format(i + 1, answered_cum, order, eps_before_ss, eps_with_ss,
                        ss_opt * sigma_ss_opt, ss_opt, beta_opt, sigma_ss_opt))
            sys.stdout.flush()

    # Return optimal parameters for the last iteration.
    return beta_opt, ss_opt, sigma_ss_opt
def _find_optimal_smooth_sensitivity_parameters(
    votes, baseline, num_teachers, threshold, sigma1, sigma2, delta, ind_step1,
    ind_step2, order):
  """Optimizes smooth sensitivity parameters by minimizing a cost function.

  The cost function is
        exact_eps + cost of GNSS + two stds of noise,
  which captures that upper bound of the confidence interval of the sanitized
  privacy budget.

  Since optimization is done with full view of sensitive data, the results
  cannot be released.
  """
  rdp_cum = 0
  answered_cum = 0
  ls_cum = 0

  # Define a plausible range for the beta values.
  betas = np.arange(.3 / order, .495 / order, .01 / order)
  cost_delta = math.log(1 / delta) / (order - 1)

  for i, v in enumerate(votes):
    if threshold is None:
      log_pr_answered = 0
      rdp1 = 0
      ls_step1 = np.zeros(num_teachers)
    else:
      log_pr_answered = pate.compute_logpr_answered(threshold, sigma1,
                                                    v - baseline[i,])
      if ind_step1:  # apply data-independent bound for step 1 (thresholding).
        rdp1 = pate.compute_rdp_data_independent_threshold(sigma1, order)
        ls_step1 = np.zeros(num_teachers)
      else:
        rdp1 = pate.compute_rdp_threshold(log_pr_answered, sigma1, order)
        ls_step1 = pate_ss.compute_local_sensitivity_bounds_threshold(
            v - baseline[i,], num_teachers, threshold, sigma1, order)

    pr_answered = math.exp(log_pr_answered)
    answered_cum += pr_answered

    if ind_step2:  # apply data-independent bound for step 2 (GNMax).
      rdp2 = pate.rdp_data_independent_gaussian(sigma2, order)
      ls_step2 = np.zeros(num_teachers)
    else:
      logq_step2 = pate.compute_logq_gaussian(v, sigma2)
      rdp2 = pate.rdp_gaussian(logq_step2, sigma2, order)
      # Compute smooth sensitivity.
      ls_step2 = pate_ss.compute_local_sensitivity_bounds_gnmax(
          v, num_teachers, sigma2, order)

    rdp_cum += rdp1 + pr_answered * rdp2
    ls_cum += ls_step1 + pr_answered * ls_step2  # Expected local sensitivity.

    if ind_step1 and ind_step2:
      # Data-independent bounds.
      cost_opt, beta_opt, ss_opt, sigma_ss_opt = None, 0., 0., np.inf
    else:
      # Data-dependent bounds.
      cost_opt, beta_opt, ss_opt, sigma_ss_opt = np.inf, None, None, None

      for beta in betas:
        ss = pate_ss.compute_discounted_max(beta, ls_cum)

        # Solution to the minimization problem:
        #   min_sigma {order * exp(2 * beta)/ sigma^2 + 2 * ss * sigma}
        sigma_ss = ((order * math.exp(2 * beta)) / ss)**(1 / 3)
        cost_ss = pate_ss.compute_rdp_of_smooth_sensitivity_gaussian(
            beta, sigma_ss, order)

        # Cost captures exact_eps + cost of releasing SS + two stds of noise.
        cost = rdp_cum + cost_ss + 2 * ss * sigma_ss
        if cost < cost_opt:
          cost_opt, beta_opt, ss_opt, sigma_ss_opt = cost, beta, ss, sigma_ss

    if ((i + 1) % 100 == 0) or (i == votes.shape[0] - 1):
      eps_before_ss = rdp_cum + cost_delta
      eps_with_ss = (
          eps_before_ss + pate_ss.compute_rdp_of_smooth_sensitivity_gaussian(
              beta_opt, sigma_ss_opt, order))
      print('{}: E[answered queries] = {:.1f}, RDP at {} goes from {:.3f} to '
            '{:.3f} +/- {:.3f} (ss = {:.4}, beta = {:.4f}, sigma_ss = {:.3f})'.
            format(i + 1, answered_cum, order, eps_before_ss, eps_with_ss,
                   ss_opt * sigma_ss_opt, ss_opt, beta_opt, sigma_ss_opt))
      sys.stdout.flush()

  # Return optimal parameters for the last iteration.
  return beta_opt, ss_opt, sigma_ss_opt