def __init__(tclass, _from, at={'tags':1, 'types':2}): if some(_from) and some(at): data = load_data(_from) tags = data[at['tags']] types = data[at['types']] if len(tags) != len(types): raise ValueError('Tag Type mismatch:', len(types)-len(tags)) super().__init__(tags=[t.strip() for t in tags], types=[t.strip() for t in types], items={})
def __init__(pclass, _from=None, line=1, args=None): if some(_from): args = load_data(_from)[line] patient.DEF = {arg.strip():0 for arg in args} patient._lines_ = len(patient.DEF) elif some(pclass.DEF): super().__init__(**pclass.DEF) pclass.states.append(pclass) pclass.set(**args)
def calculate(stats, on=.5, by='day', targets=['bio'], outcome_from=4, model=.9, virtual=None, models=None, good=(0,'good'), bad=(1,'bad'), skip=0, threshold=.75, **opts): stats.set(**opts) stats._ref = skip stats.set(stats = {tag:[] for tag in [good[1], bad[1], 'before']+targets}) if stats.from_end: stats.set(in_room=[], dismissed=[]) else: stats.set(assessed=[]) n=stats._calculate(on, by, targets, outcome_from, model, models, good, bad, threshold) while some(virtual) and n<virtual: n=stats._calculate(on, by, targets, outcome_from, model, models, good, bad, threshold, n) if not stats.stack: stats.unstacked += stats.best; stats.best = []
def load(data, file, translator, id_from='hn', prev_at=0, _from=1): last, lines = None, load_data(file)[_from:] for line in lines: raw, id = translator.translate(line), id_from new = patient(args=raw) if raw[id] == prev_at and some(last): reset = translator.translate(line, data.zero) for field in raw: if reset[field] == data.zero: reset[field] = last.get(field) new.set(**reset) last.link(new) else: new.ID = raw[id] last = new
def _count_id(_, n=0): if some(_.ID): return _.ID, n return _.prev._count_id(n+1)