Exemple #1
0
def test_TRENDY_window():
    TRENDYdf = AirborneFraction.TRENDY(co2_year, temp_year, trendy_uptake_mock)

    TRENDY_co2 = TRENDYdf.co2[2:].values
    TRENDY_temp = TRENDYdf.temp.sel(time=slice('1959', '2018')).Earth.values
    TRENDYdf.GCP['ocean sink'] = (TRENDY_co2 + TRENDY_temp) / 2

    class_af, alpha = TRENDYdf.window_af()

    phi = 0.015 / 2.12
    rho = 1.93

    test_alpha = 1 / 2.12 + 1 * phi / rho

    for decade in alpha.index:
        assert alpha.mean(axis=1).loc[decade] == pytest.approx(
            test_alpha, 1e-4)
        assert alpha.std(axis=1).loc[decade] == pytest.approx(0.)

    emission_rate = 0.02
    b = 1 / np.log(1 + emission_rate)
    u = 1 - b * test_alpha
    test_af = 1 / u

    for decade in class_af['mean'].index:
        assert class_af['mean'].loc[decade] == pytest.approx(test_af, 1e-4)
        assert class_af['std'].loc[decade] == pytest.approx(0.)
Exemple #2
0
def test_trendy_airborne():
    df = AirborneFraction.TRENDY(co2_year, temp_year, trendy_uptake_mock)
    GCPdf = AirborneFraction.GCP(co2_year, temp_year)
    GCPdf.GCP['land sink'] = (GCPdf.co2 + GCPdf.temp) / 2
    GCPdf.GCP['ocean sink'] = (GCPdf.co2 + GCPdf.temp) / 2

    phi = 0.015 / 2.12
    rho = 1.93

    land = df._feedback_parameters('Earth_Land')
    ocean = GCPdf._feedback_parameters()['ocean']

    ocean.index = ['beta', 'gamma']
    ocean['beta'] /= 2.12
    ocean['u_gamma'] = ocean['gamma'] * phi / rho

    for parameter, divisor in zip(['beta', 'gamma'], [2.12, 1]):
        assert land.loc[parameter].mean() == pytest.approx(0.5 / divisor)
        assert land.loc[parameter].std() == pytest.approx(0.)
        assert ocean[parameter] == pytest.approx(0.5 / divisor)

    # Test function
    emission_rate = 2
    b = 1 / np.log(1 + emission_rate / 100)
    beta = 0.5 * 2 / 2.12
    u_gamma = 0.5 * 2 * phi / rho
    u = 1 - b * (beta + u_gamma)
    test_af = 1 / u

    # Class function
    params = land.add(ocean, axis=0)
    class_beta = params.loc['beta']
    class_u_gamma = params.loc['u_gamma']

    class_b = 1 / np.log(1 + emission_rate / 100)
    class_u = 1 - class_b * (class_beta + class_u_gamma)

    class_af = 1 / class_u

    assert class_af.mean() == pytest.approx(test_af)
Exemple #3
0
def test_GCP_airborne():
    df = AirborneFraction.GCP(co2_year, temp_year)
    df.GCP['land sink'] = (df.co2 + df.temp) / 2
    df.GCP['ocean sink'] = (df.co2 + df.temp) / 2

    params = df._feedback_parameters()
    for sink, param in product(['land', 'ocean'], ['CO2', 'temp']):
        assert params[sink][param] == pytest.approx(0.5)

    phi = 0.015 / 2.12
    rho = 1.93

    emission_rate = 2
    b = 1 / np.log(1 + emission_rate / 100)
    beta = 0.5 * 2 / 2.12
    u_gamma = 0.5 * 2 * phi / rho
    u = 1 - b * (beta + u_gamma)
    test_af = 1 / u

    assert df.airborne_fraction(emission_rate) == pytest.approx(test_af)
Exemple #4
0
def test_GCP_window():
    GCPdf = AirborneFraction.GCP(co2_year, temp_year)
    GCPdf.GCP['land sink'] = (GCPdf.co2 + GCPdf.temp) / 2
    GCPdf.GCP['ocean sink'] = (GCPdf.co2 + GCPdf.temp) / 2

    class_af, alpha = GCPdf.window_af()

    phi = 0.015 / 2.12
    rho = 1.93

    test_alpha = 1 / 2.12 + 1 * phi / rho

    assert alpha.mean() == pytest.approx(test_alpha)
    assert alpha.std() == pytest.approx(0)

    emission_rate = 0.02
    b = 1 / np.log(1 + emission_rate)
    u = 1 - b * test_alpha
    test_af = 1 / u

    for decade in class_af.index:
        assert class_af.loc[decade] == pytest.approx(test_af)
Exemple #5
0
def test_INVF_window():
    INVdf = AirborneFraction.INVF(co2_year, temp_year, invf_uptake_mock)

    class_af, alpha = INVdf.window_af()

    phi = 0.015 / 2.12
    rho = 1.93

    test_alpha = 1 / 2.12 + 1 * phi / rho

    for decade in alpha.index:
        assert alpha.mean(axis=1).loc[decade] == pytest.approx(
            test_alpha, 1e-4)
        assert alpha.std(axis=1).loc[decade] == pytest.approx(0.)

    emission_rate = 0.02
    b = 1 / np.log(1 + emission_rate)
    u = 1 - b * test_alpha
    test_af = 1 / u

    for decade in class_af['mean'].index:
        assert class_af['mean'].loc[decade] == pytest.approx(test_af, 1e-4)
        assert class_af['std'].loc[decade] == pytest.approx(0.)
Exemple #6
0
def test_invf_airborne():
    df = AirborneFraction.INVF(co2_year, temp_year, invf_uptake_mock)

    land = df._feedback_parameters('Earth_Land')
    ocean = df._feedback_parameters('Earth_Ocean')

    for region, param in product([land, ocean], ['beta', 'gamma']):
        assert region.loc[param].mean() == pytest.approx(0.5)
        assert region.loc[param].std() == pytest.approx(0.)

    phi = 0.015 / 2.12
    rho = 1.93

    emission_rate = 2
    b = 1 / np.log(1 + emission_rate / 100)
    beta = 0.5 * 2 / 2.12
    u_gamma = 0.5 * 2 * phi / rho
    u = 1 - b * (beta + u_gamma)
    test_af = 1 / u

    assert df.airborne_fraction(emission_rate)['mean'] == pytest.approx(
        test_af)
    assert df.airborne_fraction(emission_rate)['std'] == pytest.approx(0.)
Exemple #7
0
    return af.mean()


""" RESULTS """


def af_dataframe(data):
    af_df = pd.Series(data.airborne_fraction())
    af_df['alpha_5'] = af_df['alpha_mean'] - af_df['alpha_std'] * 1.645
    af_df['alpha_95'] = af_df['alpha_mean'] + af_df['alpha_std'] * 1.645

    return af_df


""" EXECUTIONS """
GCPdf = AirborneFraction.GCP(co2['year'], temp['year'])

GCPdf.airborne_fraction()

pd.Series(GCPdf.airborne_fraction())
GCP_window = pd.DataFrame(GCPdf.window_af())
GCP_window
stats.linregress(range(len(GCP_window.index)), GCP_window.af)

INVdf = AirborneFraction.INVF(co2['year'], temp['year'], invf_uptake['year'])
af_dataframe(INVdf)
inv_window = pd.DataFrame(INVdf.window_af())
inv_window['alpha_cf'] = inv_window['alpha_std'] * 1.645
inv_window['alpha_5'] = inv_window['alpha_mean'] - inv_window['alpha_cf']
inv_window['alpha_95'] = inv_window['alpha_mean'] + inv_window['alpha_cf']
inv_window
Exemple #8
0
        "month": {
            model_name: xr.open_dataset(
                OUTPUT_DIR +
                f'TRENDY/spatial/output_all/{model_name}_S3_nbp/month.nc')
            for model_name in trendy_models
        }
    }
}

phi, rho = 0.0071, 1.93
""" DEVS """
from importlib import reload

reload(AirborneFraction)

df = AirborneFraction.GCP(co2['year'], temp['year'])  #, invf_uptake['year'])

df.window_af()


def plot():
    fig = plt.figure(figsize=(10, 8))
    alpha = beta + u_gamma
    ax1 = fig.add_subplot(211)
    ax1.bar(alpha.mean(axis=1).index - 3, alpha.mean(axis=1).values, width=3)
    ax1.axhline(linestyle='--', alpha=0.5, color='k')
    ax1.axhline(emission_rate, linestyle='--', alpha=0.5, color='r')

    ax2 = fig.add_subplot(212)
    x = af_results['mean'].index
    y = af_results['mean'].values