def summary(self): """ Print network structure :return: none """ print('Name:' + self.net_name) if torch.cuda.is_available(): print("GPU: Enabled") if self.input_shape_chw is not None: print('Input Shape: ' + str(self.input_shape_chw)) print('Net Structure:') summary_layers(self, self.input_shape_chw)
self.block6 = nn.Sequential( drn_module.layer7, drn_module.layer8 ) self.block7 = nn.Sequential( nn.Conv2d(512, 512, kernel_size=3, stride=2, padding=1, bias=False), nn.BatchNorm2d(512), nn.ReLU(inplace=True) ) def forward(self, x): """ forward with image & scene feature :param image: (N, C, H, W) :return: """ x0 = self.block0(x) # 192x256 x1 = self.block1(x0) # 96x128 x2 = self.block2(x1) # 48x64 x3 = self.block3(x2) # 24x32 x4 = self.block4(x3) # 12x16 x5 = self.block5(x4) # 6x8 x6 = self.block6(x5) # 3x4 x7 = self.block7(x6) # 2x2 return x7, x6, x5, x4, x3, x2, x1, x0 if __name__ == '__main__': from core_dl.module_util import summary_layers model = CoordNet().cuda() summary_layers(model, input_size=(3, 192, 256))