def test_ppm_nacorrection(): df = pd.DataFrame({'Name': {0: 'L-Methionine', 1: 'L-Methionine'}, 'Label': {0: 'C12 PARENT', 1: 'C13-label-1'}, 'Intensity': {0: 0.203405, 1: 0.050069999999999996}, 'Formula': {0: 'C5H10NO2S', 1: 'C5H10NO2S'}, 'Sample': {0: 'sample_1', 1: 'sample_1'}}) eleme_corr = {} na_corr_dict, corr_dict = na_correction(df, ['C13', 'N15'], 40, na_dict, eleme_corr, intensity_col=INTENSITY_COL, autodetect=True) na_corr_df = convert_to_df(na_corr_dict, False, colname='NA corrected') output_list = [-0.0053063306434838163, 0.32858944654474742] assert list(na_corr_df['NA corrected']) == output_list assert corr_dict == {'L-Methionine': {'C': [], 'N': ['O17', 'O18']}}
def test_na_corr_multi_trac_indist(): df = pd.DataFrame({'Name': {0: 'L-Methionine', 1: 'L-Methionine'}, 'Label': {0: 'C12 PARENT', 1: 'C13-label-1'}, 'Intensity': {0: 0.203405, 1: 0.050069999999999996}, 'Formula': {0: 'C5H10NO2S', 1: 'C5H10NO2S'}, 'Sample': {0: 'sample_1', 1: 'sample_1'}}) eleme_corr = {'C': ['H']} na_corr_dict, corr_dict = na_correction(df, ['C13', 'N15'],'', na_dict, eleme_corr, intensity_col=INTENSITY_COL,autodetect=False) na_corr_df = convert_to_df(na_corr_dict, False, colname='NA corrected') output_list = [-0.045478760757226011, 0.40215440095785504] assert na_corr_df['NA corrected'].tolist() == output_list
def test_na_corr_single_tracer(): df = pd.DataFrame({'Name': {0: 'Acetic', 1: 'Acetic', 2: 'Acetic'}, 'Parent': {0: 'Acetic', 1: 'Acetic', 2: 'Acetic'}, 'Label': {0: 'C12 PARENT', 1: 'C13-label-1', 2: 'C13-label-2'}, 'Intensity': {0: 0.3624, 1: 0.040349999999999997, 2: 0.59724999999999995}, 'Formula': {0: 'H4C2O2', 1: 'H4C2O2', 2: 'H4C2O2'}, 'info2': {0: 'culture_1', 1: 'culture_1', 2: 'culture_1'}, 'Sample': {0: 'sample_1', 1: 'sample_1', 2: 'sample_1'}}) eleme_corr = {} na_corr_dict, corr_dct = na_correction(df, ['C13'], '', na_dict, eleme_corr, intensity_col=INTENSITY_COL, autodetect=False) na_corr_df = convert_to_df(na_corr_dict, False, colname='NA corrected') output_list = [0.59613019390581734, 0.0023185595567865968, 0.4015512465373961] assert na_corr_df['NA corrected'].tolist() == output_list
def test_na_corr_single_trac_indist(): df = pd.DataFrame({'Name': {0: 'Acetic', 1: 'Acetic', 2: 'Acetic'}, \ 'Parent': {0: 'Acetic', 1: 'Acetic', 2: 'Acetic'}, \ 'Label': {0: 'C12 PARENT', 1: 'C13-label-1', 2: 'C13-label-2'}, \ 'Intensity': {0: 0.2274, 1: 0.4361, 2: 0.25405}, \ 'Formula': {0: 'H4C2O2', 1: 'H4C2O2', 2: 'H4C2O2'}, \ 'info2': {0: 'culture_1', 1: 'culture_1', 2: 'culture_1'}, \ 'Sample': {0: 'sample_1', 1: 'sample_1', 2: 'sample_1'}}) eleme_corr = {'C': ['H', 'O']} na_corr_dict = na_correction(df, single_tracers, eleme_corr, na_dict) na_corr_df = convert_to_df(na_corr_dict, False, colname='NA corrected') output_list = [0.2783720710600131, 0.52118757080316813, 0.3026855833807266] assert na_corr_df['NA corrected'].tolist() == output_list
def test_na_corr_single_trac_indist(): df = pd.DataFrame({'Name': {0: 'Acetic', 1: 'Acetic', 2: 'Acetic'}, \ 'Parent': {0: 'Acetic', 1: 'Acetic', 2: 'Acetic'}, \ 'Label': {0: 'C12 PARENT', 1: 'C13-label-1', 2: 'C13-label-2'}, \ 'Intensity': {0: 0.2274, 1: 0.4361, 2: 0.25405}, \ 'Formula': {0: 'H4C2O2', 1: 'H4C2O2', 2: 'H4C2O2'}, \ 'info2': {0: 'culture_1', 1: 'culture_1', 2: 'culture_1'}, \ 'Sample': {0: 'sample_1', 1: 'sample_1', 2: 'sample_1'}}) eleme_corr = {'C': ['H', 'O']} na_corr_dict, corr_dict = na_correction(df, ['C13'], '', na_dict, eleme_corr, intensity_col=INTENSITY_COL, autodetect=False) na_corr_df = convert_to_df(na_corr_dict, False, colname='NA corrected') output_list = [0.1961957568543734, 0.48572975053068485, 0.3035536244690365] assert na_corr_df['NA corrected'].tolist() == output_list
def test_na_corr_single_tracer(): df = pd.DataFrame({'Name': {0: 'Acetic', 1: 'Acetic', 2: 'Acetic'}, \ 'Parent': {0: 'Acetic', 1: 'Acetic', 2: 'Acetic'}, \ 'Label': {0: 'C12 PARENT', 1: 'C13-label-1', 2: 'C13-label-2'}, \ 'Intensity': {0: 0.3624, 1: 0.040349999999999997, 2: 0.59724999999999995}, \ 'Formula': {0: 'H4C2O2', 1: 'H4C2O2', 2: 'H4C2O2'}, \ 'info2': {0: 'culture_1', 1: 'culture_1', 2: 'culture_1'}, \ 'Sample': {0: 'sample_1', 1: 'sample_1', 2: 'sample_1'}}) eleme_corr = {} na_corr_dict = na_correction(df, single_tracers, eleme_corr, na_dict) na_corr_df = convert_to_df(na_corr_dict, False, colname='NA corrected') output_list = [ 0.59613019390581723, 0.0023185595567866008, 0.40155124653739621 ] assert na_corr_df['NA corrected'].tolist() == output_list
def test_na_corr_multi_trac(): df = pd.DataFrame({ 'Name': { 0: 'L-Methionine', 1: 'L-Methionine', 2: 'L-Methionine', 3: 'L-Methionine', 4: 'L-Methionine', 5: 'L-Methionine', 6: 'L-Methionine', 7: 'L-Methionine', 8: 'L-Methionine', 9: 'L-Methionine', 10: 'L-Methionine', 11: 'L-Methionine' }, 'Parent': { 0: 'L-Methionine', 1: 'L-Methionine', 2: 'L-Methionine', 3: 'L-Methionine', 4: 'L-Methionine', 5: 'L-Methionine', 6: 'L-Methionine', 7: 'L-Methionine', 8: 'L-Methionine', 9: 'L-Methionine', 10: 'L-Methionine', 11: 'L-Methionine' }, 'Label': { 0: 'C12 PARENT', 1: 'C13-label-1', 2: 'C13-label-2', 3: 'C13-label-3', 4: 'C13-label-4', 5: 'C13-label-5', 6: 'N15-label-1', 7: 'C13N15-label-1-1', 8: 'C13N15-label-2-1', 9: 'C13N15-label-3-1', 10: 'C13N15-label-4-1', 11: 'C13N15-label-5-1' }, 'Intensity': { 0: 0.24560000000000001, 1: 0.066650000000000001, 2: 0.0071000000000000004, 3: 0.00029999999999999997, 4: 0.0, 5: 0.0, 6: 0.061899999999999997, 7: 0.016400000000000001, 8: 0.0015, 9: 0.0001, 10: 0.0, 11: 0.60045000000000004 }, 'Formula': { 0: 'C5H10NO2S', 1: 'C5H10NO2S', 2: 'C5H10NO2S', 3: 'C5H10NO2S', 4: 'C5H10NO2S', 5: 'C5H10NO2S', 6: 'C5H10NO2S', 7: 'C5H10NO2S', 8: 'C5H10NO2S', 9: 'C5H10NO2S', 10: 'C5H10NO2S', 11: 'C5H10NO2S' }, 'Sample': { 0: 'sample_1', 1: 'sample_1', 2: 'sample_1', 3: 'sample_1', 4: 'sample_1', 5: 'sample_1', 6: 'sample_1', 7: 'sample_1', 8: 'sample_1', 9: 'sample_1', 10: 'sample_1', 11: 'sample_1' } }) eleme_corr = {} na_corr_dict = na_correction(df, multi_tracers, eleme_corr, na_dict) na_corr_df = convert_to_df(na_corr_dict, False, colname='NA corrected') output_list = [ 0.00064617771744998609, 0.3967531185142435, -9.8844997716120012e-05, 7.0170861504082293e-05, -0.00024013579424740682, -0.00018698767698716368, 0.0030976144330255844, -0.00048382556594077245, -2.6604348209106283e-06, -4.9943479640610513e-06, 2.6016225533332996e-07, 0.60045010712919833 ] assert na_corr_df['NA corrected'].tolist() == output_list
def test_na_corr_multi_trac_indist(): df = pd.DataFrame({ 'Name': { 0: 'L-Methionine', 1: 'L-Methionine', 2: 'L-Methionine', 3: 'L-Methionine', 4: 'L-Methionine', 5: 'L-Methionine', 6: 'L-Methionine', 7: 'L-Methionine', 8: 'L-Methionine', 9: 'L-Methionine', 10: 'L-Methionine', 11: 'L-Methionine' }, 'Parent': { 0: 'L-Methionine', 1: 'L-Methionine', 2: 'L-Methionine', 3: 'L-Methionine', 4: 'L-Methionine', 5: 'L-Methionine', 6: 'L-Methionine', 7: 'L-Methionine', 8: 'L-Methionine', 9: 'L-Methionine', 10: 'L-Methionine', 11: 'L-Methionine' }, 'Label': { 0: 'C12 PARENT', 1: 'C13-label-1', 2: 'C13-label-2', 3: 'C13-label-3', 4: 'C13-label-4', 5: 'C13-label-5', 6: 'N15-label-1', 7: 'C13N15-label-1-1', 8: 'C13N15-label-2-1', 9: 'C13N15-label-3-1', 10: 'C13N15-label-4-1', 11: 'C13N15-label-5-1' }, 'Intensity': { 0: 0.203405, 1: 0.050069999999999996, 2: 0.093910000000000007, 3: 0.02402, 4: 0.02051, 5: 0.0051600000000000005, 6: 0.0028300000000000001, 7: 0.00065499999999999998, 8: 0.00022499999999999999, 9: 8.4999999999999993e-05, 10: 5.0000000000000004e-06, 11: 0.48973500000000003 }, 'Formula': { 0: 'C5H10NO2S', 1: 'C5H10NO2S', 2: 'C5H10NO2S', 3: 'C5H10NO2S', 4: 'C5H10NO2S', 5: 'C5H10NO2S', 6: 'C5H10NO2S', 7: 'C5H10NO2S', 8: 'C5H10NO2S', 9: 'C5H10NO2S', 10: 'C5H10NO2S', 11: 'C5H10NO2S' }, 'Sample': { 0: 'sample_1', 1: 'sample_1', 2: 'sample_1', 3: 'sample_1', 4: 'sample_1', 5: 'sample_1', 6: 'sample_1', 7: 'sample_1', 8: 'sample_1', 9: 'sample_1', 10: 'sample_1', 11: 'sample_1' } }) eleme_corr = {'C': ['H']} na_corr_dict = na_correction(df, multi_tracers, eleme_corr, na_dict) na_corr_df = convert_to_df(na_corr_dict, False, colname='NA corrected') output_list = [ -0.075954704287110375, 0.40215442709008198, 0.016489750088414929, -0.0032216908381774477, -0.031526293342053771, 0.15881269215932281, -0.0064943180078375707, 0.0011640245763342482, 0.030179296768192233, -0.0060388880912154832, 0.0063239074820523374, 0.59811258028877923 ] assert na_corr_df['NA corrected'].tolist() == output_list