Exemple #1
0
def test_ppm_nacorrection():
	df = pd.DataFrame({'Name': {0: 'L-Methionine', 1: 'L-Methionine'},
					   'Label': {0: 'C12 PARENT', 1: 'C13-label-1'},
					   'Intensity': {0: 0.203405, 1: 0.050069999999999996},
					   'Formula': {0: 'C5H10NO2S', 1: 'C5H10NO2S'},
					   'Sample': {0: 'sample_1', 1: 'sample_1'}})
	eleme_corr = {}
	na_corr_dict, corr_dict = na_correction(df, ['C13', 'N15'], 40, na_dict, eleme_corr, intensity_col=INTENSITY_COL,
											autodetect=True)
	na_corr_df = convert_to_df(na_corr_dict, False, colname='NA corrected')
	output_list = [-0.0053063306434838163, 0.32858944654474742]
	assert list(na_corr_df['NA corrected']) == output_list
	assert corr_dict == {'L-Methionine': {'C': [], 'N': ['O17', 'O18']}}
Exemple #2
0
def test_na_corr_multi_trac_indist():
	df = pd.DataFrame({'Name': {0: 'L-Methionine', 1: 'L-Methionine'},
					   'Label': {0: 'C12 PARENT', 1: 'C13-label-1'},
					   'Intensity': {0: 0.203405, 1: 0.050069999999999996},
					   'Formula': {0: 'C5H10NO2S', 1: 'C5H10NO2S'},
					   'Sample': {0: 'sample_1', 1: 'sample_1'}})
	eleme_corr = {'C': ['H']}
	na_corr_dict, corr_dict =  na_correction(df, ['C13', 'N15'],'',
														   na_dict, eleme_corr,
														   intensity_col=INTENSITY_COL,autodetect=False)
	na_corr_df = convert_to_df(na_corr_dict, False, colname='NA corrected')
	output_list = [-0.045478760757226011, 0.40215440095785504]
	assert na_corr_df['NA corrected'].tolist() == output_list
Exemple #3
0
def test_na_corr_single_tracer():
	df = pd.DataFrame({'Name': {0: 'Acetic', 1: 'Acetic', 2: 'Acetic'},
					   'Parent': {0: 'Acetic', 1: 'Acetic', 2: 'Acetic'},
					   'Label': {0: 'C12 PARENT', 1: 'C13-label-1', 2: 'C13-label-2'},
					   'Intensity': {0: 0.3624, 1: 0.040349999999999997, 2: 0.59724999999999995},
					   'Formula': {0: 'H4C2O2', 1: 'H4C2O2', 2: 'H4C2O2'},
					   'info2': {0: 'culture_1', 1: 'culture_1', 2: 'culture_1'},
					   'Sample': {0: 'sample_1', 1: 'sample_1', 2: 'sample_1'}})

	eleme_corr = {}

	na_corr_dict, corr_dct = na_correction(df, ['C13'], '', na_dict, eleme_corr, intensity_col=INTENSITY_COL,
									       autodetect=False)
	na_corr_df = convert_to_df(na_corr_dict, False, colname='NA corrected')

	output_list = [0.59613019390581734, 0.0023185595567865968, 0.4015512465373961]

	assert na_corr_df['NA corrected'].tolist() == output_list
def test_na_corr_single_trac_indist():

    df = pd.DataFrame({'Name': {0: 'Acetic', 1: 'Acetic', 2: 'Acetic'}, \
     'Parent': {0: 'Acetic', 1: 'Acetic', 2: 'Acetic'}, \
      'Label': {0: 'C12 PARENT', 1: 'C13-label-1', 2: 'C13-label-2'}, \
       'Intensity': {0: 0.2274, 1: 0.4361, 2: 0.25405}, \
        'Formula': {0: 'H4C2O2', 1: 'H4C2O2', 2: 'H4C2O2'}, \
        'info2': {0: 'culture_1', 1: 'culture_1', 2: 'culture_1'}, \
         'Sample': {0: 'sample_1', 1: 'sample_1', 2: 'sample_1'}})

    eleme_corr = {'C': ['H', 'O']}

    na_corr_dict = na_correction(df, single_tracers, eleme_corr, na_dict)
    na_corr_df = convert_to_df(na_corr_dict, False, colname='NA corrected')

    output_list = [0.2783720710600131, 0.52118757080316813, 0.3026855833807266]

    assert na_corr_df['NA corrected'].tolist() == output_list
Exemple #5
0
def test_na_corr_single_trac_indist():

	df = pd.DataFrame({'Name': {0: 'Acetic', 1: 'Acetic', 2: 'Acetic'}, \
	 'Parent': {0: 'Acetic', 1: 'Acetic', 2: 'Acetic'}, \
	  'Label': {0: 'C12 PARENT', 1: 'C13-label-1', 2: 'C13-label-2'}, \
	   'Intensity': {0: 0.2274, 1: 0.4361, 2: 0.25405}, \
	    'Formula': {0: 'H4C2O2', 1: 'H4C2O2', 2: 'H4C2O2'}, \
	    'info2': {0: 'culture_1', 1: 'culture_1', 2: 'culture_1'}, \
	     'Sample': {0: 'sample_1', 1: 'sample_1', 2: 'sample_1'}})

	eleme_corr = {'C': ['H', 'O']}

	na_corr_dict, corr_dict = na_correction(df, ['C13'], '', na_dict, eleme_corr, intensity_col=INTENSITY_COL,
											autodetect=False)

	na_corr_df = convert_to_df(na_corr_dict, False, colname='NA corrected')

	output_list = [0.1961957568543734, 0.48572975053068485, 0.3035536244690365]

	assert na_corr_df['NA corrected'].tolist() == output_list
def test_na_corr_single_tracer():

    df = pd.DataFrame({'Name': {0: 'Acetic', 1: 'Acetic', 2: 'Acetic'}, \
     'Parent': {0: 'Acetic', 1: 'Acetic', 2: 'Acetic'}, \
      'Label': {0: 'C12 PARENT', 1: 'C13-label-1', 2: 'C13-label-2'}, \
       'Intensity': {0: 0.3624, 1: 0.040349999999999997, 2: 0.59724999999999995}, \
        'Formula': {0: 'H4C2O2', 1: 'H4C2O2', 2: 'H4C2O2'}, \
        'info2': {0: 'culture_1', 1: 'culture_1', 2: 'culture_1'}, \
         'Sample': {0: 'sample_1', 1: 'sample_1', 2: 'sample_1'}})

    eleme_corr = {}

    na_corr_dict = na_correction(df, single_tracers, eleme_corr, na_dict)
    na_corr_df = convert_to_df(na_corr_dict, False, colname='NA corrected')

    output_list = [
        0.59613019390581723, 0.0023185595567866008, 0.40155124653739621
    ]

    assert na_corr_df['NA corrected'].tolist() == output_list
def test_na_corr_multi_trac():

    df = pd.DataFrame({
        'Name': {
            0: 'L-Methionine',
            1: 'L-Methionine',
            2: 'L-Methionine',
            3: 'L-Methionine',
            4: 'L-Methionine',
            5: 'L-Methionine',
            6: 'L-Methionine',
            7: 'L-Methionine',
            8: 'L-Methionine',
            9: 'L-Methionine',
            10: 'L-Methionine',
            11: 'L-Methionine'
        },
        'Parent': {
            0: 'L-Methionine',
            1: 'L-Methionine',
            2: 'L-Methionine',
            3: 'L-Methionine',
            4: 'L-Methionine',
            5: 'L-Methionine',
            6: 'L-Methionine',
            7: 'L-Methionine',
            8: 'L-Methionine',
            9: 'L-Methionine',
            10: 'L-Methionine',
            11: 'L-Methionine'
        },
        'Label': {
            0: 'C12 PARENT',
            1: 'C13-label-1',
            2: 'C13-label-2',
            3: 'C13-label-3',
            4: 'C13-label-4',
            5: 'C13-label-5',
            6: 'N15-label-1',
            7: 'C13N15-label-1-1',
            8: 'C13N15-label-2-1',
            9: 'C13N15-label-3-1',
            10: 'C13N15-label-4-1',
            11: 'C13N15-label-5-1'
        },
        'Intensity': {
            0: 0.24560000000000001,
            1: 0.066650000000000001,
            2: 0.0071000000000000004,
            3: 0.00029999999999999997,
            4: 0.0,
            5: 0.0,
            6: 0.061899999999999997,
            7: 0.016400000000000001,
            8: 0.0015,
            9: 0.0001,
            10: 0.0,
            11: 0.60045000000000004
        },
        'Formula': {
            0: 'C5H10NO2S',
            1: 'C5H10NO2S',
            2: 'C5H10NO2S',
            3: 'C5H10NO2S',
            4: 'C5H10NO2S',
            5: 'C5H10NO2S',
            6: 'C5H10NO2S',
            7: 'C5H10NO2S',
            8: 'C5H10NO2S',
            9: 'C5H10NO2S',
            10: 'C5H10NO2S',
            11: 'C5H10NO2S'
        },
        'Sample': {
            0: 'sample_1',
            1: 'sample_1',
            2: 'sample_1',
            3: 'sample_1',
            4: 'sample_1',
            5: 'sample_1',
            6: 'sample_1',
            7: 'sample_1',
            8: 'sample_1',
            9: 'sample_1',
            10: 'sample_1',
            11: 'sample_1'
        }
    })

    eleme_corr = {}

    na_corr_dict = na_correction(df, multi_tracers, eleme_corr, na_dict)
    na_corr_df = convert_to_df(na_corr_dict, False, colname='NA corrected')

    output_list = [
        0.00064617771744998609, 0.3967531185142435, -9.8844997716120012e-05,
        7.0170861504082293e-05, -0.00024013579424740682,
        -0.00018698767698716368, 0.0030976144330255844,
        -0.00048382556594077245, -2.6604348209106283e-06,
        -4.9943479640610513e-06, 2.6016225533332996e-07, 0.60045010712919833
    ]

    assert na_corr_df['NA corrected'].tolist() == output_list
def test_na_corr_multi_trac_indist():

    df = pd.DataFrame({
        'Name': {
            0: 'L-Methionine',
            1: 'L-Methionine',
            2: 'L-Methionine',
            3: 'L-Methionine',
            4: 'L-Methionine',
            5: 'L-Methionine',
            6: 'L-Methionine',
            7: 'L-Methionine',
            8: 'L-Methionine',
            9: 'L-Methionine',
            10: 'L-Methionine',
            11: 'L-Methionine'
        },
        'Parent': {
            0: 'L-Methionine',
            1: 'L-Methionine',
            2: 'L-Methionine',
            3: 'L-Methionine',
            4: 'L-Methionine',
            5: 'L-Methionine',
            6: 'L-Methionine',
            7: 'L-Methionine',
            8: 'L-Methionine',
            9: 'L-Methionine',
            10: 'L-Methionine',
            11: 'L-Methionine'
        },
        'Label': {
            0: 'C12 PARENT',
            1: 'C13-label-1',
            2: 'C13-label-2',
            3: 'C13-label-3',
            4: 'C13-label-4',
            5: 'C13-label-5',
            6: 'N15-label-1',
            7: 'C13N15-label-1-1',
            8: 'C13N15-label-2-1',
            9: 'C13N15-label-3-1',
            10: 'C13N15-label-4-1',
            11: 'C13N15-label-5-1'
        },
        'Intensity': {
            0: 0.203405,
            1: 0.050069999999999996,
            2: 0.093910000000000007,
            3: 0.02402,
            4: 0.02051,
            5: 0.0051600000000000005,
            6: 0.0028300000000000001,
            7: 0.00065499999999999998,
            8: 0.00022499999999999999,
            9: 8.4999999999999993e-05,
            10: 5.0000000000000004e-06,
            11: 0.48973500000000003
        },
        'Formula': {
            0: 'C5H10NO2S',
            1: 'C5H10NO2S',
            2: 'C5H10NO2S',
            3: 'C5H10NO2S',
            4: 'C5H10NO2S',
            5: 'C5H10NO2S',
            6: 'C5H10NO2S',
            7: 'C5H10NO2S',
            8: 'C5H10NO2S',
            9: 'C5H10NO2S',
            10: 'C5H10NO2S',
            11: 'C5H10NO2S'
        },
        'Sample': {
            0: 'sample_1',
            1: 'sample_1',
            2: 'sample_1',
            3: 'sample_1',
            4: 'sample_1',
            5: 'sample_1',
            6: 'sample_1',
            7: 'sample_1',
            8: 'sample_1',
            9: 'sample_1',
            10: 'sample_1',
            11: 'sample_1'
        }
    })

    eleme_corr = {'C': ['H']}

    na_corr_dict = na_correction(df, multi_tracers, eleme_corr, na_dict)
    na_corr_df = convert_to_df(na_corr_dict, False, colname='NA corrected')

    output_list = [
        -0.075954704287110375, 0.40215442709008198, 0.016489750088414929,
        -0.0032216908381774477, -0.031526293342053771, 0.15881269215932281,
        -0.0064943180078375707, 0.0011640245763342482, 0.030179296768192233,
        -0.0060388880912154832, 0.0063239074820523374, 0.59811258028877923
    ]

    assert na_corr_df['NA corrected'].tolist() == output_list