Exemple #1
0
 def test_exclude_unknowns_empty_error(self):
     try:
         Dataset.build(self.triplet_data, exclude_unknowns=True)
     except ValueError:
         assert True
    def _build_stratified_datasets(self, train_data, test_data, val_data):

        if train_data is None or len(train_data) == 0:
            raise ValueError("train_data is required but None or empty!")
        if test_data is None or len(test_data) == 0:
            raise ValueError("test_data is required but None or empty!")

        self.global_uid_map.clear()
        self.global_iid_map.clear()

        # build training set
        self.train_set = Dataset.build(
            data=train_data,
            fmt=self.fmt,
            global_uid_map=self.global_uid_map,
            global_iid_map=self.global_iid_map,
            seed=self.seed,
            exclude_unknowns=False,
        )
        if self.verbose:
            print("---")
            print("Training data:")
            print("Number of users = {}".format(self.train_set.num_users))
            print("Number of items = {}".format(self.train_set.num_items))
            print("Number of ratings = {}".format(self.train_set.num_ratings))
            print("Max rating = {:.1f}".format(self.train_set.max_rating))
            print("Min rating = {:.1f}".format(self.train_set.min_rating))
            print("Global mean = {:.1f}".format(self.train_set.global_mean))

        # build test set
        self.test_set = Dataset.build(
            data=test_data,
            fmt=self.fmt,
            global_uid_map=self.global_uid_map,
            global_iid_map=self.global_iid_map,
            seed=self.seed,
            exclude_unknowns=self.exclude_unknowns,
        )
        if self.verbose:
            print("---")
            print("Test data (Q0):")
            print("Number of users = {}".format(len(self.test_set.uid_map)))
            print("Number of items = {}".format(len(self.test_set.iid_map)))
            print("Number of ratings = {}".format(self.test_set.num_ratings))
            print("Max rating = {:.1f}".format(self.test_set.max_rating))
            print("Min rating = {:.1f}".format(self.test_set.min_rating))
            print("Global mean = {:.1f}".format(self.test_set.global_mean))
            print(
                "Number of unknown users = {}".format(
                    self.test_set.num_users - self.train_set.num_users
                )
            )
            print(
                "Number of unknown items = {}".format(
                    self.test_set.num_items - self.train_set.num_items
                )
            )

        # build stratified datasets
        self.stratified_sets = {}

        # match the corresponding propensity score for each feedback
        test_props = np.array([self.props[i]
                               for u, i, r in test_data], dtype=np.float64)

        # stratify
        strata, bins = pd.cut(x=test_props,
                              bins=self.n_strata,
                              labels=['Q%d' %
                                      i for i in range(1, self.n_strata+1)],
                              retbins=True)

        for stratum in sorted(np.unique(strata)):

            # sample the corresponding sub-population
            qtest_data = []
            for (u, i, r), q in zip(test_data, strata):
                if q == stratum:
                    qtest_data.append((u, i, r))

            # build a dataset
            qtest_set = Dataset.build(
                data=qtest_data,
                fmt=self.fmt,
                global_uid_map=self.global_uid_map,
                global_iid_map=self.global_iid_map,
                seed=self.seed,
                exclude_unknowns=self.exclude_unknowns,
            )
            if self.verbose:
                print("---")
                print("Test data ({}):".format(stratum))
                print("Number of users = {}".format(
                    len(qtest_set.uid_map)))
                print("Number of items = {}".format(
                    len(qtest_set.iid_map)))
                print("Number of ratings = {}".format(
                    qtest_set.num_ratings))
                print("Max rating = {:.1f}".format(qtest_set.max_rating))
                print("Min rating = {:.1f}".format(qtest_set.min_rating))
                print("Global mean = {:.1f}".format(qtest_set.global_mean))
                print(
                    "Number of unknown users = {}".format(
                        qtest_set.num_users - self.train_set.num_users
                    )
                )
                print(
                    "Number of unknown items = {}".format(
                        self.test_set.num_items - self.train_set.num_items
                    )
                )

            self.stratified_sets[stratum] = qtest_set

        if val_data is not None and len(val_data) > 0:
            self.val_set = Dataset.build(
                data=val_data,
                fmt=self.fmt,
                global_uid_map=self.global_uid_map,
                global_iid_map=self.global_iid_map,
                seed=self.seed,
                exclude_unknowns=self.exclude_unknowns,
            )
            if self.verbose:
                print("---")
                print("Validation data:")
                print("Number of users = {}".format(len(self.val_set.uid_map)))
                print("Number of items = {}".format(len(self.val_set.iid_map)))
                print("Number of ratings = {}".format(self.val_set.num_ratings))

        if self.verbose:
            print("---")
            print("Total users = {}".format(self.total_users))
            print("Total items = {}".format(self.total_items))

        self.train_set.total_users = self.total_users
        self.train_set.total_items = self.total_items

        self._build_modalities()

        return self