Exemple #1
0
 def navigate(self, dest):
     """Find a path from current location to the given destination."""
     # Make our node objects for A*.
     rospy.loginfo("POSE: %f, %f" %(self.pose.x, self.pose.y))
     start = Landmark(name="START", ltype="END", x=self.pose.x, y=self.pose.y)
     goal = Landmark(name="GOAL", ltype="END", x=dest.x, y=dest.y)
     # Find visible neighbors of start and goal to add as edges to the graph.
     landmarks = imap(lambda pair: pair[0], self.landmark_graph.itervalues())
     # Here we manually add the goal to the candidate landmarks for start
     # to allow for navigation directly to the goal location.
     start_zone = self.find_nearest_visibles(start, chain(landmarks, [goal]))
     # We have to add start here for the empty zone check below.
     landmarks = imap(lambda pair: pair[0], self.landmark_graph.itervalues())
     goal_zone = self.find_nearest_visibles(goal, chain(landmarks, [start]))
     rospy.loginfo("Start zone: %s" % (", ".join(l.name for l in start_zone)))
     rospy.loginfo("Goal zone: %s" % (", ".join(l.name for l in goal_zone)))
     if not start_zone or not goal_zone:
         rospy.logerr("Cannot connect start and goal! A* failed.")
         return [];
     # A* functions.
     is_goal = lambda node: node.name == "GOAL"
     heuristic = lambda node: point_distance(node, goal)
     def neighbors(node):
         if node.name == "START":
             return start_zone
         nbrs = self.landmark_graph[node.name][1]
         if node in goal_zone:
             # Intentionally use list concat to make a copy of the list.
             # If we just modify nbrs, it will modify the original graph.
             return nbrs + [goal]
         return nbrs
     return a_star(start, is_goal, neighbors, point_distance, heuristic)
Exemple #2
0
    def find_nearest_visibles(self, point, landmarks):
        """Finds landmarks visible from a point.

        Limited to only nodes within MAX_ZONE_DIST of point, unless there
        are none in which case the single next closest node is returned.

        Arguments:
          point     - The starting point.
          landmarks - An iter of landmarks to consider.

        Returns a list of up to MAX_ZONE_SIZE closest visible Landmarks.

        """
        #rospy.loginfo("Calculating visibles for %s", point)
        #rospy.loginfo("Selecting from %s" % (", ".join(l.name for l in landmarks)))
        visibles = []
        for landmark in landmarks:
            if self.navigable(point, landmark) and landmark.ltype in [
                    'NSH', 'I', 'WEH', 'END'
            ]:
                d = point_distance(point, landmark)
                visibles.append((d, landmark))
        visibles.sort()

        for d, landmark in visibles:
            rospy.loginfo("%s at %f", landmark.name, d)

        nearest = []
        for d, landmark in visibles[:CorobotNavigator.MAX_ZONE_SIZE]:
            # Limit to within MAX_ZONE_DIST, but take at least one.
            if d < CorobotNavigator.MAX_ZONE_DIST or not nearest:
                nearest.append(landmark)
        return nearest
Exemple #3
0
    def find_nearest_visibles(self, point, landmarks):
        """Finds landmarks visible from a point.

        Limited to only nodes within MAX_ZONE_DIST of point, unless there
        are none in which case the single next closest node is returned.

        Arguments:
          point     - The starting point.
          landmarks - An iter of landmarks to consider.

        Returns a list of up to MAX_ZONE_SIZE closest visible Landmarks.

        """
        #rospy.loginfo("Calculating visibles for %s", point)
        #rospy.loginfo("Selecting from %s" % (", ".join(l.name for l in landmarks)))
        visibles = []
        for landmark in landmarks:
            if self.navigable(point, landmark) and landmark.ltype in ['NSH', 'I', 'WEH', 'END']:
                d = point_distance(point, landmark)
                visibles.append((d, landmark))
        visibles.sort()

        for d, landmark in visibles:
            rospy.loginfo("%s at %f", landmark.name, d)

        nearest = []
        for d, landmark in visibles[:CorobotNavigator.MAX_ZONE_SIZE]:
            # Limit to within MAX_ZONE_DIST, but take at least one.
            if d < CorobotNavigator.MAX_ZONE_DIST or not nearest:
                nearest.append(landmark)
        return nearest
Exemple #4
0
 def navigate(self, dest):
     """Find a path from current location to the given destination."""
     # Make our node objects for A*.
     start = Landmark(name="START", x=self.pose.x, y=self.pose.y)
     goal = Landmark(name="GOAL", x=dest.x, y=dest.y)
     # Find visible neighbors of start and goal to add as edges to the graph.
     landmarks = imap(lambda pair: pair[0], self.landmark_graph.itervalues())
     # Here we manually add the goal to the candidate landmarks for start
     # to allow for navigation directly to the goal location.
     start_zone = self.find_nearest_visibles(start, chain(landmarks, [goal]))
     # We have to add start here for the empty zone check below.
     landmarks = imap(lambda pair: pair[0], self.landmark_graph.itervalues())
     goal_zone = self.find_nearest_visibles(goal, chain(landmarks, [start]))
     rospy.loginfo("Start zone: %s" % (", ".join(l.name for l in start_zone)))
     rospy.loginfo("Goal zone: %s" % (", ".join(l.name for l in goal_zone)))
     if not start_zone or not goal_zone:
         rospy.logerr("Cannot connect start and goal! A* failed.")
         return []
     # A* functions.
     is_goal = lambda node: node.name == "GOAL"
     heuristic = lambda node: point_distance(node, goal)
     def neighbors(node):
         if node.name == "START":
             return start_zone
         nbrs = self.landmark_graph[node.name][1]
         if node in goal_zone:
             # Intentionally use list concat to make a copy of the list.
             # If we just modify nbrs, it will modify the original graph.
             return nbrs + [goal]
         return nbrs
     return a_star(start, is_goal, neighbors, point_distance, heuristic)