Exemple #1
0
def main():
    apollocaffe.set_device(0)
    #apollocaffe.set_cpp_loglevel(0)
    apollocaffe.set_random_seed(0)
    np.random.seed(0)

    job = sys.argv[1]
    corpus_name = sys.argv[2]

    config = util.Struct(**yaml.load(CONFIG))
    if corpus_name == "abstract":
        train_scenes, dev_scenes, test_scenes = corpus.load_abstract()
    else:
        assert corpus_name == "birds"
        train_scenes, dev_scenes, test_scenes = corpus.load_birds()
    apollo_net = ApolloNet()
    print "loaded data"
    print "%d training examples" % len(train_scenes)

    listener0_model = Listener0Model(apollo_net, config.model)
    speaker0_model = Speaker0Model(apollo_net, config.model)
    sampling_speaker1_model = SamplingSpeaker1Model(apollo_net, config.model)
    compiled_speaker1_model = CompiledSpeaker1Model(apollo_net, config.model)

    if job == "train.base":
        train(train_scenes, dev_scenes, listener0_model, apollo_net, config.opt)
        train(train_scenes, dev_scenes, speaker0_model, apollo_net, config.opt)
        apollo_net.save("models/%s.base.caffemodel" % corpus_name)
        exit()

    if job == "train.compiled":
        apollo_net.load("models/%s.base.caffemodel" % corpus_name)
        print "loaded model"
        train(train_scenes, dev_scenes, compiled_speaker1_model, apollo_net,
                config.opt)
        apollo_net.save("models/%s.compiled.caffemodel" % corpus_name)
        exit()

    if job in ("sample.base", "sample.compiled"):
        if job == "sample.base":
            apollo_net.load("models/%s.base.caffemodel" % corpus_name)
        else:
            apollo_net.load("models/%s.compiled.caffemodel" % corpus_name)
        print "loaded model"
        if job == "sample.base":
            models = {
                "sampling_speaker1": sampling_speaker1_model,
            }
        elif job == "sample.compiled":
            models = {
                "compiled_speaker1": compiled_speaker1_model,
            }

        name = job.split(".")[1]

        run_experiment("one_different", corpus_name, name, models, dev_scenes)
        run_experiment("by_similarity", corpus_name, name, models, dev_scenes)
        run_experiment("all_same", corpus_name, name, models, dev_scenes)
Exemple #2
0
def make_abstract():
    train_data, val_data, test_data = corpus.load_abstract()

    by_prop = defaultdict(list)

    for datum in val_data:
        props = {(p.type_index, p.object_index) for p in datum.props}
        props = {(i,j) if i not in (2,3) else (i,0) for i,j in props}
        props = tuple(sorted(props))
        by_prop[props].append(datum)

    with open("experiments/all_same/abstract.ids.txt", "w") as id_f:
        counter = 0
        for key in by_prop:
            if counter >= N_PAIRS:
                break
            images = set(d.image_id for d in by_prop[key])
            if len(images) <= 3:
                continue
            images = list(images)
            np.random.shuffle(images)
            images = images[:2]
            print >>id_f, ",".join(images) + ",0"
            counter += 1

    with open("experiments/one_different/abstract.ids.txt", "w") as id_f:
        counter = 0
        for key1 in by_prop:
            if counter >= N_PAIRS:
                break
            keys = list(by_prop.keys())
            np.random.shuffle(keys)
            for key2 in by_prop:
                if len(key1) != len(key2):
                    continue
                if len(set(key1) ^ set(key2)) != 2:
                    continue
                if key1 > key2:
                    continue
                images = [by_prop[key1][0].image_id, by_prop[key2][0].image_id]
                print >>id_f, ",".join(images) + ",2"
                counter += 1
                break

    with open("experiments/by_similarity/abstract.ids.txt", "w") as id_f:
        keys = list(by_prop.keys())
        counter = 0
        for key1 in by_prop:
            if counter >= N_PAIRS:
                break
            attempts = 0
            while attempts < 100:
                attempts += 1
                key2 = keys[np.random.randint(len(keys))]
                similarity = len(set(key1) ^ set(key2))
                if similarity > MAX_DIFFERENCES:
                    continue
                if np.random.random() > 0.45 ** similarity:
                    continue
                img1 = by_prop[key1][0].image_id
                img2 = by_prop[key2][0].image_id
                if img1 == img2:
                    continue
                print >>id_f, "%s,%s,%s" % (img1, img2, similarity)
                counter += 1
                #print counter
                break
Exemple #3
0
def make_abstract():
    train_data, val_data, test_data = corpus.load_abstract()

    by_prop = defaultdict(list)

    for datum in val_data:
        props = {(p.type_index, p.object_index) for p in datum.props}
        props = {(i, j) if i not in (2, 3) else (i, 0) for i, j in props}
        props = tuple(sorted(props))
        by_prop[props].append(datum)

    with open("experiments/all_same/abstract.ids.txt", "w") as id_f:
        counter = 0
        for key in by_prop:
            if counter >= N_PAIRS:
                break
            images = set(d.image_id for d in by_prop[key])
            if len(images) <= 3:
                continue
            images = list(images)
            np.random.shuffle(images)
            images = images[:2]
            print >> id_f, ",".join(images) + ",0"
            counter += 1

    with open("experiments/one_different/abstract.ids.txt", "w") as id_f:
        counter = 0
        for key1 in by_prop:
            if counter >= N_PAIRS:
                break
            keys = list(by_prop.keys())
            np.random.shuffle(keys)
            for key2 in by_prop:
                if len(key1) != len(key2):
                    continue
                if len(set(key1) ^ set(key2)) != 2:
                    continue
                if key1 > key2:
                    continue
                images = [by_prop[key1][0].image_id, by_prop[key2][0].image_id]
                print >> id_f, ",".join(images) + ",2"
                counter += 1
                break

    with open("experiments/by_similarity/abstract.ids.txt", "w") as id_f:
        keys = list(by_prop.keys())
        counter = 0
        for key1 in by_prop:
            if counter >= N_PAIRS:
                break
            attempts = 0
            while attempts < 100:
                attempts += 1
                key2 = keys[np.random.randint(len(keys))]
                similarity = len(set(key1) ^ set(key2))
                if similarity > MAX_DIFFERENCES:
                    continue
                if np.random.random() > 0.45**similarity:
                    continue
                img1 = by_prop[key1][0].image_id
                img2 = by_prop[key2][0].image_id
                if img1 == img2:
                    continue
                print >> id_f, "%s,%s,%s" % (img1, img2, similarity)
                counter += 1
                #print counter
                break
Exemple #4
0
RHO = 0.95
EPS = 0.000001
LR = args.LR
CLIP = 10

N_TEST_IMAGES = 100
N_TEST = N_TEST_IMAGES * 10
N_EXPERIMENT_PAIRS = 100

# Not sure about num_scenes??
NUM_SCENES = 10

util.setup_logging(args)

train_scenes, dev_scenes, test_scenes = corpus.load_abstract()
VOCAB_SIZE = len(corpus.WORD_INDEX)

VOCAB_SIZE = len(corpus.WORD_INDEX)

output_size = 1 
listener0_model = model.Listener0Model(VOCAB_SIZE, NUM_SCENES, args.hidden_sz, output_size, args.dropout) # need to pass in some parameters
speaker0_model = model.Speaker0Model(VOCAB_SIZE, 100, args.dropout, args.dec)



if torch.cuda.is_available():
    listener0_model.cuda()
    speaker0_model.cuda()

optimizer_l0 = optim.Adam(listener0_model.parameters(), lr=LR)