def predict(deployment_name, api_name): try: payload = request.get_json() except Exception as e: return "Malformed JSON", status.HTTP_400_BAD_REQUEST ctx = local_cache["ctx"] api = local_cache["api"] response = {} if not util.is_dict(payload) or "samples" not in payload: util.log_pretty_flat(payload, logging_func=logger.error) return prediction_failed( payload, "top level `samples` key not found in request") predictions = [] samples = payload["samples"] if not util.is_list(samples): util.log_pretty_flat(samples, logging_func=logger.error) return prediction_failed( payload, "expected the value of key `samples` to be a list of json objects") for i, sample in enumerate(payload["samples"]): try: result = run_predict(sample) except CortexException as e: e.wrap("error", "sample {}".format(i + 1)) logger.error(str(e)) logger.exception( "An error occurred, see `cortex logs -v api {}` for more details." .format(api["name"])) return prediction_failed(sample, str(e)) except Exception as e: logger.exception( "An error occurred, see `cortex logs -v api {}` for more details." .format(api["name"])) return prediction_failed(sample, str(e)) predictions.append(result) response["predictions"] = predictions response["resource_id"] = api["id"] return jsonify(response)
def create_raw_prediction_request(sample): signature_def = local_cache["metadata"]["signatureDef"] signature_key = list(signature_def.keys())[0] prediction_request = predict_pb2.PredictRequest() prediction_request.model_spec.name = "default" prediction_request.model_spec.signature_name = signature_key for column_name, value in sample.items(): shape = [1] if util.is_list(value): shape = [len(value)] sig_type = signature_def[signature_key]["inputs"][column_name]["dtype"] tensor_proto = tf.make_tensor_proto([value], dtype=DTYPE_TO_TF_TYPE[sig_type], shape=shape) prediction_request.inputs[column_name].CopyFrom(tensor_proto) return prediction_request
def create_prediction_request(transformed_sample): ctx = local_cache["ctx"] signature_def = local_cache["metadata"]["signatureDef"] signature_key = list(signature_def.keys())[0] prediction_request = predict_pb2.PredictRequest() prediction_request.model_spec.name = "default" prediction_request.model_spec.signature_name = signature_key for column_name, value in transformed_sample.items(): column_type = ctx.get_inferred_column_type(column_name) data_type = tf_lib.CORTEX_TYPE_TO_TF_TYPE[column_type] shape = [1] if util.is_list(value): shape = [len(value)] tensor_proto = tf.make_tensor_proto([value], dtype=data_type, shape=shape) prediction_request.inputs[column_name].CopyFrom(tensor_proto) return prediction_request
def create_transformer_inputs_from_map(input, col_value_map): if util.is_str(input): if util.is_resource_ref(input): res_name = util.get_resource_ref(input) return col_value_map[res_name] return input if util.is_list(input): replaced = [] for item in input: replaced.append(create_transformer_inputs_from_map(item, col_value_map)) return replaced if util.is_dict(input): replaced = {} for key, val in input.items(): key_replaced = create_transformer_inputs_from_map(key, col_value_map) val_replaced = create_transformer_inputs_from_map(val, col_value_map) replaced[key_replaced] = val_replaced return replaced return input
def populate_values(self, input, input_schema, preserve_column_refs): if input is None: if input_schema is None: return None if input_schema.get("_allow_null") == True: return None raise UserException("Null value is not allowed") if util.is_resource_ref(input): res_name = util.get_resource_ref(input) if res_name in self.constants: if self.constants[res_name].get("value") is not None: const_val = self.constants[res_name]["value"] elif self.constants[res_name].get("path") is not None: const_val = self.storage.get_json_external(self.constants[res_name]["path"]) try: return self.populate_values(const_val, input_schema, preserve_column_refs) except CortexException as e: e.wrap("constant " + res_name) raise if res_name in self.aggregates: agg_val = self.get_obj(self.aggregates[res_name]["key"]) try: return self.populate_values(agg_val, input_schema, preserve_column_refs) except CortexException as e: e.wrap("aggregate " + res_name) raise if res_name in self.columns: if input_schema is not None: col_type = self.get_inferred_column_type(res_name) if col_type not in input_schema["_type"]: raise UserException( "column {}: unsupported input type (expected type {}, got type {})".format( res_name, util.data_type_str(input_schema["_type"]), util.data_type_str(col_type), ) ) if preserve_column_refs: return input else: return res_name if util.is_list(input): elem_schema = None if input_schema is not None: if not util.is_list(input_schema["_type"]): raise UserException( "unsupported input type (expected type {}, got {})".format( util.data_type_str(input_schema["_type"]), util.user_obj_str(input) ) ) elem_schema = input_schema["_type"][0] min_count = input_schema.get("_min_count") if min_count is not None and len(input) < min_count: raise UserException( "list has length {}, but the minimum allowed length is {}".format( len(input), min_count ) ) max_count = input_schema.get("_max_count") if max_count is not None and len(input) > max_count: raise UserException( "list has length {}, but the maximum allowed length is {}".format( len(input), max_count ) ) casted = [] for i, elem in enumerate(input): try: casted.append(self.populate_values(elem, elem_schema, preserve_column_refs)) except CortexException as e: e.wrap("index " + i) raise return casted if util.is_dict(input): if input_schema is None: casted = {} for key, val in input.items(): key_casted = self.populate_values(key, None, preserve_column_refs) try: val_casted = self.populate_values(val, None, preserve_column_refs) except CortexException as e: e.wrap(util.user_obj_str(key)) raise casted[key_casted] = val_casted return casted if not util.is_dict(input_schema["_type"]): raise UserException( "unsupported input type (expected type {}, got {})".format( util.data_type_str(input_schema["_type"]), util.user_obj_str(input) ) ) min_count = input_schema.get("_min_count") if min_count is not None and len(input) < min_count: raise UserException( "map has length {}, but the minimum allowed length is {}".format( len(input), min_count ) ) max_count = input_schema.get("_max_count") if max_count is not None and len(input) > max_count: raise UserException( "map has length {}, but the maximum allowed length is {}".format( len(input), max_count ) ) is_generic_map = False if len(input_schema["_type"]) == 1: input_type_key = next(iter(input_schema["_type"].keys())) if is_compound_type(input_type_key): is_generic_map = True generic_map_key_schema = input_schema_from_type_schema(input_type_key) generic_map_value = input_schema["_type"][input_type_key] if is_generic_map: casted = {} for key, val in input.items(): key_casted = self.populate_values( key, generic_map_key_schema, preserve_column_refs ) try: val_casted = self.populate_values( val, generic_map_value, preserve_column_refs ) except CortexException as e: e.wrap(util.user_obj_str(key)) raise casted[key_casted] = val_casted return casted # fixed map casted = {} for key, val_schema in input_schema["_type"].items(): if key in input: val = input[key] else: if val_schema.get("_optional") is not True: raise UserException("missing key: " + util.user_obj_str(key)) if val_schema.get("_default") is None: continue val = val_schema["_default"] try: val_casted = self.populate_values(val, val_schema, preserve_column_refs) except CortexException as e: e.wrap(util.user_obj_str(key)) raise casted[key] = val_casted return casted if input_schema is None: return input if not util.is_str(input_schema["_type"]): raise UserException( "unsupported input type (expected type {}, got {})".format( util.data_type_str(input_schema["_type"]), util.user_obj_str(input) ) ) return cast_compound_type(input, input_schema["_type"])
def predict(app_name, api_name): try: payload = request.get_json() except Exception as e: return "Malformed JSON", status.HTTP_400_BAD_REQUEST sess = local_cache["sess"] api = local_cache["api"] request_handler = local_cache.get("request_handler") input_metadata = local_cache["input_metadata"] output_metadata = local_cache["output_metadata"] response = {} if not util.is_dict(payload) or "samples" not in payload: util.log_pretty_flat(payload, logging_func=logger.error) return prediction_failed( payload, "top level `samples` key not found in request") predictions = [] samples = payload["samples"] if not util.is_list(samples): util.log_pretty_flat(samples, logging_func=logger.error) return prediction_failed( payload, "expected the value of key `samples` to be a list of json objects") for i, sample in enumerate(payload["samples"]): try: logger.info("sample: " + util.pp_str_flat(sample)) prepared_sample = sample if request_handler is not None and util.has_function( request_handler, "pre_inference"): prepared_sample = request_handler.pre_inference( sample, input_metadata) logger.info("pre_inference: " + util.pp_str_flat(prepared_sample)) inference_input = convert_to_onnx_input(prepared_sample, input_metadata) model_outputs = sess.run([], inference_input) result = [] for model_output in model_outputs: if type(model_output) is np.ndarray: result.append(model_output.tolist()) else: result.append(model_output) logger.info("inference: " + util.pp_str_flat(result)) if request_handler is not None and util.has_function( request_handler, "post_inference"): result = request_handler.post_inference( result, output_metadata) logger.info("post_inference: " + util.pp_str_flat(result)) prediction = {"prediction": result} except CortexException as e: e.wrap("error", "sample {}".format(i + 1)) logger.error(str(e)) logger.exception( "An error occurred, see `cx logs -v api {}` for more details.". format(api["name"])) return prediction_failed(sample, str(e)) except Exception as e: logger.exception( "An error occurred, see `cx logs -v api {}` for more details.". format(api["name"])) return prediction_failed(sample, str(e)) predictions.append(prediction) response["predictions"] = predictions response["resource_id"] = api["id"] return jsonify(response)
def predict(deployment_name, api_name): try: payload = request.get_json() except Exception as e: return "Malformed JSON", status.HTTP_400_BAD_REQUEST ctx = local_cache["ctx"] api = local_cache["api"] response = {} if not util.is_dict(payload) or "samples" not in payload: util.log_pretty_flat(payload, logging_func=logger.error) return prediction_failed( payload, "top level `samples` key not found in request") logger.info("Predicting " + util.pluralize(len(payload["samples"]), "sample", "samples")) predictions = [] samples = payload["samples"] if not util.is_list(samples): util.log_pretty_flat(samples, logging_func=logger.error) return prediction_failed( payload, "expected the value of key `samples` to be a list of json objects") for i, sample in enumerate(payload["samples"]): util.log_indent("sample {}".format(i + 1), 2) if util.is_resource_ref(api["model"]): is_valid, reason = is_valid_sample(sample) if not is_valid: return prediction_failed(sample, reason) for column in local_cache["required_inputs"]: column_type = ctx.get_inferred_column_type(column["name"]) sample[column["name"]] = util.upcast(sample[column["name"]], column_type) try: result = run_predict(sample) except CortexException as e: e.wrap("error", "sample {}".format(i + 1)) logger.error(str(e)) logger.exception( "An error occurred, see `cortex logs -v api {}` for more details." .format(api["name"])) return prediction_failed(sample, str(e)) except Exception as e: logger.exception( "An error occurred, see `cortex logs -v api {}` for more details." .format(api["name"])) # Show signature def for external models (since we don't validate input) schemaStr = "" signature_def = local_cache["metadata"]["signatureDef"] if (not util.is_resource_ref(api["model"]) and signature_def.get("predict") is not None # Just to be safe and signature_def["predict"].get("inputs") is not None # Just to be safe ): schemaStr = "\n\nExpected shema:\n" + util.pp_str( signature_def["predict"]["inputs"]) return prediction_failed(sample, str(e) + schemaStr) predictions.append(result) response["predictions"] = predictions response["resource_id"] = api["id"] return jsonify(response)