bias = ((pkh['power'].real / pkd['power'].real)[1:6]**0.5).mean() if rank == 0: print('Bias = %0.2f' % bias) Rsm = 8 Rbao = Rsm / 2**0.5 ff = cosmo.scale_independent_growth_rate(zz) beta = bias / ff usenoise = True if usenoise: if rank == 0: print('Use noise') truth_noise_model = mapnoise.ThermalNoise(truth_pm, seed=100, aa=aa, att=stage2, spread=spread, hex=hex, limk=2, Ns=Ndish, checkbase=False, nmin=None) data_p = truth_noise_model.add_noise(data_p) position = truth_pm.generate_uniform_particle_grid(shift=0) layout = truth_pm.decompose(position) rho = data_p.mapp if aa == 0.1429 and cfg['mods']['wopt'] == 'opt': rho = std.gauss(data_p.mapp, 2 * bs / ncd) else: rho = std.decic(rho) rho = std.apply_wedge(rho, kmin, angle)
noise = None if rank == 0: print('Noise : ', noise) ######################################### #dynamics stages = numpy.linspace(0.01, aa, nsteps, endpoint=True) if pmdisp: dynamic_model = NBodyModel(cosmo, truth_pm, B=B, steps=stages) else: dynamic_model = ZAModel(cosmo, truth_pm, B=B, steps=stages) if rank == 0: print(dynamic_model) #noise if stage2 is not None: truth_noise_model = mapnoise.ThermalNoise(truth_pm, seed=100, aa=aa, att=stage2, spread=spread, hex=hex, limk=2, Ns=Ndish) else: truth_noise_model = mapnoise.ThermalNoise(truth_pm, seed=None, aa=aa, att=stage2, spread=spread, hex=hex, Ns=Ndish) wedge_noise_model = mapnoise.WedgeNoiseModel(pm=truth_pm, power=1, seed=100, kmin=kmin,
if rank == 0: print('RSD factor is : ', rsdfac) noise = None if rank == 0: print('Noise : ', noise) stages = numpy.linspace(0.01, aa, nsteps, endpoint=True) if pmdisp: dynamic_model = NBodyModel(cosmo, new_pm, B=B, steps=stages) else: dynamic_model = ZAModel(cosmo, new_pm, B=B, steps=stages) if rank == 0: print(dynamic_model) #noise if stage2 is not None: truth_noise_model = mapnoise.ThermalNoise(new_pm, seed=100, aa=aa, att=stage2, spread=spread, hex=hex, limk=2, Ns=Ndish, checkbase=True) else: truth_noise_model = mapnoise.ThermalNoise(new_pm, seed=None, aa=aa, att=stage2, spread=spread, hex=hex, Ns=Ndish) wedge_noise_model = mapnoise.WedgeNoiseModel(pm=new_pm, power=1, seed=100,
d_truth = new_pm.paint(dyn['Position'], layout=dlayout) ## #Model params = numpy.loadtxt(optfolder + '/params.txt') stages = numpy.linspace(0.01, aa, nsteps, endpoint=True) if pmdisp: dynamic_model = NBodyModel(cosmo, new_pm, B=B, steps=stages) else: dynamic_model = ZAModel(cosmo, new_pm, B=B, steps=stages) if rank == 0: print(dynamic_model) #noise if stage2 is not None: truth_noise_model = mapnoise.ThermalNoise(new_pm, seed=100, aa=aa, att=stage2,spread=spread, hex=hex, limk=2, Ns=Ndish) else: truth_noise_model = mapnoise.ThermalNoise(new_pm, seed=None, aa=aa, att=stage2,spread=spread, hex=hex, Ns=Ndish) wedge_noise_model = mapnoise.WedgeNoiseModel(pm=new_pm, power=1, seed=100, kmin=kmin, angle=angle) #Create and save data if not found ################# mock_model = map.MockModel(dynamic_model, params=params, rsdpos=rsdpos, rsdfac=rsdfac) try: data_p = map.Observable.load(optfolder+'/datap_up') except: data_p = map.Observable(hmesh, d_truth, s_truth) data_p.save(optfolder+'datap_up/') try:
##rankweight = sum((masswt**2).compute()) ##totweight2 = comm.allreduce(rankweight) #noise = bs**3 / (hmesh.csum()**2 / (hmesh**2).csum()) noise = None if rank == 0 : print('Noise : ', noise) ######################################### #dynamics stages = numpy.linspace(0.01, aa, nsteps, endpoint=True) if pmdisp: dynamic_model = NBodyModel(cosmo, truth_pm, B=B, steps=stages) else: dynamic_model = ZAModel(cosmo, truth_pm, B=B, steps=stages) if rank == 0: print(dynamic_model) #noise if stage2 is not None: truth_noise_model = mapnoise.ThermalNoise(truth_pm, seed=100, aa=aa, att=stage2,spread=spread, hex=hex) else: truth_noise_model = mapnoise.ThermalNoise(truth_pm, seed=None, aa=aa, att=stage2,spread=spread, hex=hex) #Create and save data if not found s_truth = BigFileMesh(dfolder + 'linear', 'LinearDensityK').paint() dyn = BigFileCatalog(dfolder + 'fastpm_%0.4f/1'%aa) dlayout = truth_pm.decompose(dyn['Position']) d_truth = truth_pm.paint(dyn['Position'], layout=dlayout) try: data_p = map.Observable.load(optfolder+'/datap') except: data_p = map.Observable(hmesh, d_truth, s_truth) data_p.save(optfolder+'datap/') try: