def PEFM(country_name_list, country_and_percentile_rank_list):
    Pres_2011_percentile_rank_list = []
    Pres_2012_percentile_rank_list = []
    Pres_2013_percentile_rank_list = []
    Pres_2014_percentile_rank_list = []
    Pres_2015_percentile_rank_list = []
    Pres_2016_percentile_rank_list = []
    Pres_2017_percentile_rank_list = []
    Total_Pres_percentile_rank_list = []

    for country in country_name_list:
        country = int(country_numberifier(country))
        Pres_2011 = (country_and_percentile_rank_list['Pres_2011'][country])

        number_of_nan = int(sum([pd.isnull(i) for i in Pres_2011]))
        real_len = int(len(Pres_2011) / 2)
        dvisible_number = int(real_len - number_of_nan)
        biz_sum = np.nansum(Pres_2011[1::2])
        Pres_2011 = biz_sum / dvisible_number
        Pres_2011_percentile_rank_list.append(Pres_2011)

        #2012
        Pres_2012 = (country_and_percentile_rank_list['Pres_2012'][country])
        number_of_nan = int(sum([pd.isnull(i) for i in Pres_2012]))
        real_len = int(len(Pres_2012) / 2)
        dvisible_number = int(real_len - number_of_nan)
        biz_sum = np.nansum(Pres_2012[1::2])
        Pres_2012 = biz_sum / dvisible_number
        Pres_2012_percentile_rank_list.append(Pres_2012)

        #2013
        Pres_2013 = (country_and_percentile_rank_list['Pres_2013'][country])
        number_of_nan = int(sum([pd.isnull(i) for i in Pres_2013]))
        real_len = int(len(Pres_2013) / 2)
        dvisible_number = int(real_len - number_of_nan)
        biz_sum = np.nansum(Pres_2013[1::2])
        Pres_2013 = biz_sum / dvisible_number
        Pres_2013_percentile_rank_list.append(Pres_2013)

        #2014
        Pres_2014 = (country_and_percentile_rank_list['Pres_2014'][country])
        number_of_nan = int(sum([pd.isnull(i) for i in Pres_2014]))
        real_len = int(len(Pres_2014) / 2)
        dvisible_number = int(real_len - number_of_nan)
        biz_sum = np.nansum(Pres_2014[1::2])
        Pres_2014 = biz_sum / dvisible_number
        Pres_2014_percentile_rank_list.append(Pres_2014)

        #2015
        Pres_2015 = (country_and_percentile_rank_list['Pres_2015'][country])
        number_of_nan = int(sum([pd.isnull(i) for i in Pres_2015]))
        real_len = int(len(Pres_2015) / 2)
        dvisible_number = int(real_len - number_of_nan)
        biz_sum = np.nansum(Pres_2015[1::2])
        Pres_2015 = biz_sum / dvisible_number
        Pres_2015_percentile_rank_list.append(Pres_2015)

        #2016
        Pres_2016 = (country_and_percentile_rank_list['Pres_2016'][country])
        number_of_nan = int(sum([pd.isnull(i) for i in Pres_2016]))
        real_len = int(len(Pres_2016) / 2)
        dvisible_number = int(real_len - number_of_nan)
        biz_sum = np.nansum(Pres_2016[1::2])
        Pres_2016 = biz_sum / dvisible_number
        Pres_2016_percentile_rank_list.append(Pres_2016)

        #2017
        Pres_2017 = (country_and_percentile_rank_list['Pres_2017'][country])
        number_of_nan = int(sum([pd.isnull(i) for i in Pres_2017]))
        real_len = int(len(Pres_2017) / 2)
        dvisible_number = int(real_len - number_of_nan)
        biz_sum = np.nansum(Pres_2017[1::2])
        Pres_2017 = biz_sum / dvisible_number
        Pres_2017_percentile_rank_list.append(Pres_2017)

        #TOTAL
        Total_Pres = (country_and_percentile_rank_list['Pres_2017'][country] +
                      country_and_percentile_rank_list['Pres_2016'][country] +
                      country_and_percentile_rank_list['Pres_2015'][country] +
                      country_and_percentile_rank_list['Pres_2014'][country] +
                      country_and_percentile_rank_list['Pres_2013'][country] +
                      country_and_percentile_rank_list['Pres_2012'][country] +
                      country_and_percentile_rank_list['Pres_2011'][country])

        number_of_nan = int(sum([pd.isnull(i) for i in Total_Pres]))
        real_len = int(len(Total_Pres) / 2)
        dvisible_number = int(real_len - number_of_nan)
        biz_sum = np.nansum(Total_Pres[1::2])
        Total_Pres = biz_sum / dvisible_number
        Total_Pres_percentile_rank_list.append(Total_Pres)

    #PERCENTILING COMPOSITES AND FACTORIZATION
    Pres_2011_percentile_rank_list_factored = []
    Pres_2012_percentile_rank_list_factored = []
    Pres_2013_percentile_rank_list_factored = []
    Pres_2014_percentile_rank_list_factored = []
    Pres_2015_percentile_rank_list_factored = []
    Pres_2016_percentile_rank_list_factored = []
    Pres_2017_percentile_rank_list_factored = []
    Total_Pres_percentile_rank_list_factored = []

    for a in Pres_2011_percentile_rank_list:
        Pres_2011_percentile_rank_list_factored.append(
            stats.percentileofscore(Pres_2011_percentile_rank_list,
                                    a,
                                    kind='rank'))

    for b in Pres_2012_percentile_rank_list:
        Pres_2012_percentile_rank_list_factored.append(
            stats.percentileofscore(Pres_2012_percentile_rank_list,
                                    b,
                                    kind='rank'))

    for c in Pres_2013_percentile_rank_list:
        Pres_2013_percentile_rank_list_factored.append(
            stats.percentileofscore(Pres_2013_percentile_rank_list,
                                    c,
                                    kind='rank'))

    for d in Pres_2014_percentile_rank_list:
        Pres_2014_percentile_rank_list_factored.append(
            stats.percentileofscore(Pres_2014_percentile_rank_list,
                                    d,
                                    kind='rank'))

    for e in Pres_2015_percentile_rank_list:
        Pres_2015_percentile_rank_list_factored.append(
            stats.percentileofscore(Pres_2015_percentile_rank_list,
                                    e,
                                    kind='rank'))

    for f in Pres_2016_percentile_rank_list:
        Pres_2016_percentile_rank_list_factored.append(
            stats.percentileofscore(Pres_2016_percentile_rank_list,
                                    f,
                                    kind='rank'))

    for h in Pres_2017_percentile_rank_list:
        Pres_2017_percentile_rank_list_factored.append(
            stats.percentileofscore(Pres_2017_percentile_rank_list,
                                    h,
                                    kind='rank'))

    for g in Total_Pres_percentile_rank_list:
        Total_Pres_percentile_rank_list_factored.append(
            stats.percentileofscore(Total_Pres_percentile_rank_list,
                                    g,
                                    kind='rank'))

    # Weighting of Age more heavily
    Pres_2012_percentile_rank_list_factored = [
        i * 1.1 for i in Pres_2012_percentile_rank_list_factored
    ]
    Pres_2013_percentile_rank_list_factored = [
        i * 1.2 for i in Pres_2013_percentile_rank_list_factored
    ]
    Pres_2014_percentile_rank_list_factored = [
        i * 1.3 for i in Pres_2014_percentile_rank_list_factored
    ]
    Pres_2015_percentile_rank_list_factored = [
        i * 1.4 for i in Pres_2015_percentile_rank_list_factored
    ]
    Pres_2016_percentile_rank_list_factored = [
        i * 1.5 for i in Pres_2016_percentile_rank_list_factored
    ]
    Pres_2017_percentile_rank_list_factored = [
        i * 1.6 for i in Pres_2017_percentile_rank_list_factored
    ]
    Total_Pres_percentile_rank_list_factored = [
        i * 1.7 for i in Total_Pres_percentile_rank_list_factored
    ]

    total_Pres_rank = {}
    for country in country_name_list:
        country_num = int(country_numberifier(country))
        Pres_rank_data_together = (
            Pres_2011_percentile_rank_list_factored[country_num],
            Pres_2012_percentile_rank_list_factored[country_num],
            Pres_2013_percentile_rank_list_factored[country_num],
            Pres_2014_percentile_rank_list_factored[country_num],
            Pres_2015_percentile_rank_list_factored[country_num],
            Pres_2016_percentile_rank_list_factored[country_num],
            Pres_2017_percentile_rank_list_factored[country_num],
            Total_Pres_percentile_rank_list_factored[country_num])
        total_Pres_rank[str(country)] = Pres_rank_data_together

    Pres_rank_aggregate_factored = []
    for country in country_name_list:
        tbr = total_Pres_rank[country]
        #Factoring for number of missing data Fields and averaging the raw score
        number_of_nan = int(sum([pd.isnull(i) for i in tbr]))
        real_len = len(tbr)
        dvisible_number = int(real_len - number_of_nan)
        num_sum = np.nansum(tbr)
        tbr = num_sum / dvisible_number

        Pres_rank_aggregate_factored.append(tbr)

    return {'Pres_rank_aggregate_factored': Pres_rank_aggregate_factored}
def PFM(country_name_list, country_and_percentile_rank_list):
    summer_olympics_percentile_rank_list = []
    winter_olympics_percentile_rank_list = []
    total_olympics_percentile_rank_list = []
    miscellany_percentile_rank_list = []

    for country in country_name_list:
        country = int(country_numberifier(country))
        Summer_Olympics = (
            country_and_percentile_rank_list[
                'Games Attended Total Summer Olympics'][country] +
            country_and_percentile_rank_list['Medals Total Summer Olympics']
            [country])
        #Factoring for number of missing data Fields and averaging the raw score
        number_of_nan = int(sum([pd.isnull(i) for i in Summer_Olympics]))
        real_len = int(len(Summer_Olympics) / 2)
        dvisible_number = int(real_len - number_of_nan)
        biz_sum = np.nansum(Summer_Olympics[1::2])
        Summer_Olympics = biz_sum / dvisible_number
        summer_olympics_percentile_rank_list.append(Summer_Olympics)

        Winter_Olympics = (
            country_and_percentile_rank_list['Winter Olympics Attended Total']
            [country] +
            country_and_percentile_rank_list['Winter Olympics Medals Total']
            [country])
        #Factoring for number of missing data Fields and averaging the raw score
        number_of_nan = int(sum([pd.isnull(i) for i in Winter_Olympics]))
        real_len = int(len(Winter_Olympics) / 2)
        dvisible_number = int(real_len - number_of_nan)
        num_sum = np.nansum(Winter_Olympics[1::2])
        Winter_Olympics = num_sum / dvisible_number
        winter_olympics_percentile_rank_list.append(Winter_Olympics)

        Total_Olympics = (
            country_and_percentile_rank_list['Combined Olympics Attended']
            [country] +
            country_and_percentile_rank_list['Combined Medals Total Olympics']
            [country])
        #Factoring for number of missing data Fields and averaging the raw score
        number_of_nan = int(sum([pd.isnull(i) for i in Total_Olympics]))
        real_len = int(len(Total_Olympics) / 2)
        dvisible_number = int(real_len - number_of_nan)
        num_sum = np.nansum(Total_Olympics[1::2])
        Total_Olympics = num_sum / dvisible_number
        total_olympics_percentile_rank_list.append(Total_Olympics)

        Miscellany = (
            country_and_percentile_rank_list['Number Of Billionaires'][country]
            + country_and_percentile_rank_list['Nobel Prizes'][country])

        #Factoring for number of missing data Fields and averaging the raw score
        number_of_nan = int(sum([pd.isnull(i) for i in Miscellany]))
        real_len = int(len(Miscellany) / 2)
        dvisible_number = int(real_len - number_of_nan)
        num_sum = np.nansum(Miscellany[1::2])
        Miscellany = num_sum / dvisible_number
        miscellany_percentile_rank_list.append(Miscellany)

    #PERCENTILING COMPOSITES AND FACTORIZATION
    summer_olympics_percentile_rank_list_factored = []
    winter_olympics_percentile_rank_list_factored = []
    total_olympics_percentile_rank_list_factored = []
    miscellany_percentile_rank_list_factored = []

    for a in summer_olympics_percentile_rank_list:
        summer_olympics_percentile_rank_list_factored.append(
            stats.percentileofscore(summer_olympics_percentile_rank_list,
                                    a,
                                    kind='rank'))

    for c in winter_olympics_percentile_rank_list:
        winter_olympics_percentile_rank_list_factored.append(
            stats.percentileofscore(winter_olympics_percentile_rank_list,
                                    c,
                                    kind='rank'))

    for d in total_olympics_percentile_rank_list:
        total_olympics_percentile_rank_list_factored.append(
            stats.percentileofscore(total_olympics_percentile_rank_list,
                                    d,
                                    kind='rank'))

    for e in miscellany_percentile_rank_list:
        miscellany_percentile_rank_list_factored.append(
            stats.percentileofscore(miscellany_percentile_rank_list,
                                    e,
                                    kind='rank'))

    # Weighting of Size more heavily
    '''
    miscellany_percentile_rank_list_factored = [i * 2 for i in miscellany_percentile_rank_list_factored]
    '''

    total_prestige_rank = {}
    for country in country_name_list:
        country_num = int(country_numberifier(country))
        prestige_rank_data_together = (
            summer_olympics_percentile_rank_list_factored[country_num],
            winter_olympics_percentile_rank_list_factored[country_num],
            total_olympics_percentile_rank_list_factored[country_num],
            miscellany_percentile_rank_list_factored[country_num])
        total_prestige_rank[str(country)] = prestige_rank_data_together

    prestige_rank_aggregate_factored = []
    for country in country_name_list:
        tbr = total_prestige_rank[country]
        #Factoring for number of missing data Fields and averaging the raw score
        number_of_nan = int(sum([pd.isnull(i) for i in tbr]))
        real_len = len(tbr)
        dvisible_number = int(real_len - number_of_nan)
        num_sum = np.nansum(tbr)
        tbr = num_sum / dvisible_number

        prestige_rank_aggregate_factored.append(tbr)

    return {
        'prestige_rank_aggregate_factored': prestige_rank_aggregate_factored
    }
def CDFM(country_name_list, country_and_percentile_rank_list):
    ease_of_travel_percentile_rank_list = []
    americana_abroad_percentile_rank_list = []
    immigration_percentile_rank_list = []
    ulterior_interaction_percentile_rank_list = []

    for country in country_name_list:
        country = int(country_numberifier(country))
        Ease_Of_Travel = (
            country_and_percentile_rank_list[
                'Visa_Requirements_for_US_Citizens'][country] +
            country_and_percentile_rank_list[
                'Total_Non_Immigrant_Arrivals_Visitation_to_the_US_FY_2014']
            [country])
        #Factoring for number of missing data Fields and averaging the raw score
        number_of_nan = int(sum([pd.isnull(i) for i in Ease_Of_Travel]))
        real_len = int(len(Ease_Of_Travel) / 2)
        dvisible_number = int(real_len - number_of_nan)
        biz_sum = np.nansum(Ease_Of_Travel[1::2])
        Ease_Of_Travel = biz_sum / dvisible_number
        ease_of_travel_percentile_rank_list.append(Ease_Of_Travel)

        Americana_Abroad = (
            country_and_percentile_rank_list['McDonald_Locations_in_country']
            [country] + country_and_percentile_rank_list['Starbucks'][country])
        #Factoring for number of missing data Fields and averaging the raw score
        number_of_nan = int(sum([pd.isnull(i) for i in Americana_Abroad]))
        real_len = int(len(Americana_Abroad) / 2)
        dvisible_number = int(real_len - number_of_nan)
        num_sum = np.nansum(Americana_Abroad[1::2])
        Americana_Abroad = num_sum / dvisible_number
        americana_abroad_percentile_rank_list.append(Americana_Abroad)

        Immigration = (
            country_and_percentile_rank_list['Immigration_to_the_US_2010']
            [country] +
            country_and_percentile_rank_list['Immigration_to_the_US_2011']
            [country] +
            country_and_percentile_rank_list['Immigration_to_the_US_2012']
            [country] +
            country_and_percentile_rank_list['Immigration_to_the_US_2013']
            [country] +
            country_and_percentile_rank_list['Immigration_to_the_US_2014']
            [country])
        #Factoring for number of missing data Fields and averaging the raw score
        number_of_nan = int(sum([pd.isnull(i) for i in Immigration]))
        real_len = int(len(Immigration) / 2)
        dvisible_number = int(real_len - number_of_nan)
        num_sum = np.nansum(Immigration[1::2])
        Immigration = num_sum / dvisible_number
        immigration_percentile_rank_list.append(Immigration)

        Ulterior_Interaction = (
            country_and_percentile_rank_list[
                'Total_Tourists_and_Business_Arrival_Visitation_to_the_US_FY_201']
            [country] + country_and_percentile_rank_list[
                'Students_and_exchange_visitors_Visitation_to_the_US_FY_2014']
            [country] + country_and_percentile_rank_list[
                'Temporary_workers_and_families_Visitation_to_the_US_FY_2014']
            [country])
        #Factoring for number of missing data Fields and averaging the raw score
        number_of_nan = int(sum([pd.isnull(i) for i in Ulterior_Interaction]))
        real_len = int(len(Ulterior_Interaction) / 2)
        dvisible_number = int(real_len - number_of_nan)
        num_sum = np.nansum(Ulterior_Interaction[1::2])
        Ulterior_Interaction = num_sum / dvisible_number
        ulterior_interaction_percentile_rank_list.append(Ulterior_Interaction)

    #PERCENTILING COMPOSITES AND FACTORIZATION
    ease_of_travel_percentile_rank_list_factored = []
    americana_abroad_percentile_rank_list_factored = []
    immigration_percentile_rank_list_factored = []
    ulterior_interaction_percentile_rank_list_factored = []

    for a in ease_of_travel_percentile_rank_list:
        ease_of_travel_percentile_rank_list_factored.append(
            stats.percentileofscore(ease_of_travel_percentile_rank_list,
                                    a,
                                    kind='rank'))

    for b in americana_abroad_percentile_rank_list:
        americana_abroad_percentile_rank_list_factored.append(
            stats.percentileofscore(americana_abroad_percentile_rank_list,
                                    b,
                                    kind='rank'))

    for c in immigration_percentile_rank_list:
        immigration_percentile_rank_list_factored.append(
            stats.percentileofscore(immigration_percentile_rank_list,
                                    c,
                                    kind='rank'))

    for d in ulterior_interaction_percentile_rank_list:
        ulterior_interaction_percentile_rank_list_factored.append(
            stats.percentileofscore(ulterior_interaction_percentile_rank_list,
                                    d,
                                    kind='rank'))

    cultural_diffusion_rank = {}
    for country in country_name_list:
        country_num = int(country_numberifier(country))
        cultural_diffusion_rank_data_together = (
            ease_of_travel_percentile_rank_list_factored[country_num],
            americana_abroad_percentile_rank_list_factored[country_num],
            immigration_percentile_rank_list_factored[country_num],
            ulterior_interaction_percentile_rank_list_factored[country_num])
        cultural_diffusion_rank[str(
            country)] = cultural_diffusion_rank_data_together

    cultural_diffusion_aggregate_factored = []
    for country in country_name_list:
        tbr = cultural_diffusion_rank[country]
        #Factoring for number of missing data Fields and averaging the raw score
        number_of_nan = int(sum([pd.isnull(i) for i in tbr]))
        real_len = len(tbr)
        dvisible_number = int(real_len - number_of_nan)
        num_sum = np.nansum(tbr)
        tbr = num_sum / dvisible_number
        cultural_diffusion_aggregate_factored.append(tbr)

    return {
        'cultural_diffusion_aggregate_factored':
        cultural_diffusion_aggregate_factored
    }
def TRFM(country_name_list, country_and_percentile_rank_list):
    #Total Business Score
    total_trade_rank_percentile_list = []

    rankings_trade_percentile_rank_list = []
    data_trade_percentile_rank_list = []

    for country in country_name_list:
        country_name = country
        country = int(country_numberifier(country))
        Rankings_Trade = (
            country_and_percentile_rank_list['FDI Inflow in Millions'][country]
            +
            country_and_percentile_rank_list['Trading Across Borders'][country]
            + country_and_percentile_rank_list['GDP Growth Rate in pencentage']
            [country] +
            zero_or_nan(country, country_and_percentile_rank_list)['score'] +
            country_and_percentile_rank_list['Trade Freedom'][country] +
            country_and_percentile_rank_list[
                'Change in Trade Freedom from 2015'][country] +
            country_and_percentile_rank_list[
                'Stock Market Capitalization in billions'][country])
        #Factoring for number of missing data Fields and averaging the raw score
        number_of_nan = int(sum([pd.isnull(i) for i in Rankings_Trade]))
        real_len = int(len(Rankings_Trade) / 2)
        dvisible_number = int(real_len - number_of_nan)
        biz_sum = np.nansum(Rankings_Trade[1::2])
        Rankings_Trade = biz_sum / dvisible_number
        rankings_trade_percentile_rank_list.append(Rankings_Trade)

        Data_Trade = (trade_data_multiplier(
            country, country_and_percentile_rank_list)['new_import_score'] +
                      trade_data_multiplier(
                          country,
                          country_and_percentile_rank_list)['new_export_score']
                      + country_and_percentile_rank_list[
                          'Exports from the United States in 2014'][country] +
                      country_and_percentile_rank_list[
                          'Imports to the United States in 2014'][country] +
                      country_and_percentile_rank_list[
                          'Exports from the United States in 2013'][country] +
                      country_and_percentile_rank_list[
                          'Imports to the United States in 2013'][country] +
                      country_and_percentile_rank_list[
                          'Exports from the United States in 2012'][country] +
                      country_and_percentile_rank_list[
                          'Imports to the United States in 2012'][country] +
                      country_and_percentile_rank_list[
                          'Exports from the United States in 2011'][country] +
                      country_and_percentile_rank_list[
                          'Imports to the United States in 2011'][country] +
                      country_and_percentile_rank_list[
                          'Exports from the United States in 2010'][country] +
                      country_and_percentile_rank_list[
                          'Imports to the United States in 2010'][country] +
                      country_and_percentile_rank_list[
                          'Exports from the United States in 2009'][country] +
                      country_and_percentile_rank_list[
                          'Imports to the United States in 2009'][country])
        #Factoring for number of missing data Fields and averaging the raw score

        number_of_nan = int(sum([pd.isnull(i) for i in Data_Trade]))
        real_len = int(len(Data_Trade) / 2)
        dvisible_number = int(real_len - number_of_nan)
        num_sum = np.nansum(Data_Trade[1::2])
        Data_Trade = num_sum / dvisible_number
        data_trade_percentile_rank_list.append(Data_Trade)

    #PERCENTILING COMPOSITES AND FACTORIZATION
    rankings_trade_percentile_rank_list_factored = []
    data_trade_percentile_rank_list_factored = []

    for a in rankings_trade_percentile_rank_list:
        rankings_trade_percentile_rank_list_factored.append(
            stats.percentileofscore(rankings_trade_percentile_rank_list,
                                    a,
                                    kind='rank'))

    for b in data_trade_percentile_rank_list:
        data_trade_percentile_rank_list_factored.append(
            stats.percentileofscore(data_trade_percentile_rank_list,
                                    b,
                                    kind='rank'))

    #Weighting The Trade Rankings By a factor of 8 for Data_Trade
    rankings_trade_percentile_rank_list_factored = [
        i * .25 for i in rankings_trade_percentile_rank_list_factored
    ]
    data_trade_percentile_rank_list_factored = [
        i * 1.75 for i in data_trade_percentile_rank_list_factored
    ]

    total_trade_rank = {}
    for country in country_name_list:
        country_num = int(country_numberifier(country))
        trade_rank_data_together = (
            rankings_trade_percentile_rank_list_factored[country_num],
            data_trade_percentile_rank_list_factored[country_num])
        total_trade_rank[str(country)] = trade_rank_data_together

    trade_relations_aggregate_factored = []
    for country in country_name_list:
        tbr = total_trade_rank[country]
        #Factoring for number of missing data Fields and averaging the raw score
        number_of_nan = int(sum([pd.isnull(i) for i in tbr]))
        real_len = len(tbr)
        dvisible_number = int(real_len - number_of_nan)
        num_sum = np.nansum(tbr)
        tbr = num_sum / dvisible_number
        trade_relations_aggregate_factored.append(tbr)

    return {
        'trade_relations_aggregate_factored':
        trade_relations_aggregate_factored
    }
def CPFM(country_name_list, country_and_percentile_rank_list):
    people_power_percentile_rank_list = []
    financial_power_percentile_rank_list = []
    global_climate_percentile_rank_list = []

    for country in country_name_list:
        country = int(country_numberifier(country))
        People_Power = (country_and_percentile_rank_list['Power Status and Relationship'][country] +
                                country_and_percentile_rank_list['Population in Millions'][country] +
                                country_and_percentile_rank_list['Geographic Area including water'][country])
        #Factoring for number of missing data Fields and averaging the raw score
        number_of_nan = int(sum([pd.isnull(i) for i in People_Power]))
        real_len = int(len(People_Power)/2)
        dvisible_number = int(real_len - number_of_nan)
        biz_sum = np.nansum(People_Power[1::2])
        People_Power = biz_sum / dvisible_number       
        people_power_percentile_rank_list.append(People_Power)
        
        Financial_Climate = (country_and_percentile_rank_list['GDP in Billions at PPP'][country] +
                                country_and_percentile_rank_list['5 Year GDP Growth Rate in Percentage'][country] +
                                country_and_percentile_rank_list['GDP per Capita in PPP'][country] +
                                country_and_percentile_rank_list['Unemployment in Percent'][country] +
                                country_and_percentile_rank_list['Public Debt as Percentage of GDP'][country] +
                                country_and_percentile_rank_list['HDI'][country])
        #Factoring for number of missing data Fields and averaging the raw score
        number_of_nan = int(sum([pd.isnull(i) for i in Financial_Climate]))
        real_len = int(len(Financial_Climate)/2)
        dvisible_number = int(real_len - number_of_nan)
        num_sum = np.nansum(Financial_Climate[1::2])
        Financial_Climate = num_sum / dvisible_number
        financial_power_percentile_rank_list.append(Financial_Climate)

        Global_Climate = (country_and_percentile_rank_list['Same language'][country] +
                                country_and_percentile_rank_list['Opinion of the US'][country] +
                                country_and_percentile_rank_list['Free Trade Agreements'][country] +
                                country_and_percentile_rank_list['Shared Currency'][country])
        #Factoring for number of missing data Fields and averaging the raw score
        number_of_nan = int(sum([pd.isnull(i) for i in Global_Climate]))
        real_len = int(len(Global_Climate)/2)
        dvisible_number = int(real_len - number_of_nan)
        num_sum = np.nansum(Global_Climate[1::2])
        Global_Climate = num_sum / dvisible_number
        global_climate_percentile_rank_list.append(Global_Climate)

    #PERCENTILING COMPOSITES AND FACTORIZATION
    people_power_percentile_rank_list_factored = []
    financial_power_percentile_rank_list_factored = []
    global_climate_percentile_rank_list_factored = []

    for a in people_power_percentile_rank_list:
        people_power_percentile_rank_list_factored.append(stats.percentileofscore(people_power_percentile_rank_list, a, kind='rank'))            

    for b in financial_power_percentile_rank_list:
        financial_power_percentile_rank_list_factored.append(stats.percentileofscore(financial_power_percentile_rank_list, b, kind='rank'))

    for c in global_climate_percentile_rank_list:
        global_climate_percentile_rank_list_factored.append(stats.percentileofscore(global_climate_percentile_rank_list, c, kind='rank'))

    # Weighting of Size more heavily
    people_power_percentile_rank_list_factored = [i * 3 for i in people_power_percentile_rank_list_factored]
                                                                     
    total_profile_rank = {}
    for country in country_name_list:
        country_num = int(country_numberifier(country))
        profile_rank_data_together = (people_power_percentile_rank_list_factored[country_num],
                                        financial_power_percentile_rank_list_factored[country_num],
                                        global_climate_percentile_rank_list_factored[country_num])
        total_profile_rank[str(country)] = profile_rank_data_together                                         
    
    country_profile_aggregate_factored = []
    for country in country_name_list:
        tbr = total_profile_rank[country]
        #Factoring for number of missing data Fields and averaging the raw score
        number_of_nan = int(sum([pd.isnull(i) for i in tbr]))
        real_len = len(tbr)
        dvisible_number = int(real_len - number_of_nan)
        num_sum = np.nansum(tbr)
        tbr = num_sum / dvisible_number
        tbr = tbr / 2
        country_profile_aggregate_factored.append(tbr)

    return {'country_profile_aggregate_factored':country_profile_aggregate_factored}
Exemple #6
0
def VPFM(country_name_list, country_and_percentile_rank_list):
    VP_2011_percentile_rank_list = []
    VP_2012_percentile_rank_list = []
    VP_2013_percentile_rank_list = []
    VP_2014_percentile_rank_list = []
    VP_2015_percentile_rank_list = []
    VP_2016_percentile_rank_list = []
    Total_VP_percentile_rank_list = []

    for country in country_name_list:
        country = int(country_numberifier(country))
        VP_2011 = (country_and_percentile_rank_list['VP_2011'][country])

        number_of_nan = int(sum([pd.isnull(i) for i in VP_2011]))
        real_len = int(len(VP_2011) / 2)
        dvisible_number = int(real_len - number_of_nan)
        biz_sum = np.nansum(VP_2011[1::2])
        VP_2011 = biz_sum / dvisible_number
        VP_2011_percentile_rank_list.append(VP_2011)

        #2012
        VP_2012 = (country_and_percentile_rank_list['VP_2012'][country])
        number_of_nan = int(sum([pd.isnull(i) for i in VP_2012]))
        real_len = int(len(VP_2012) / 2)
        dvisible_number = int(real_len - number_of_nan)
        biz_sum = np.nansum(VP_2012[1::2])
        VP_2012 = biz_sum / dvisible_number
        VP_2012_percentile_rank_list.append(VP_2012)

        #2013
        VP_2013 = (country_and_percentile_rank_list['VP_2013'][country])
        number_of_nan = int(sum([pd.isnull(i) for i in VP_2013]))
        real_len = int(len(VP_2013) / 2)
        dvisible_number = int(real_len - number_of_nan)
        biz_sum = np.nansum(VP_2013[1::2])
        VP_2013 = biz_sum / dvisible_number
        VP_2013_percentile_rank_list.append(VP_2013)

        #2014
        VP_2014 = (country_and_percentile_rank_list['VP_2014'][country])
        number_of_nan = int(sum([pd.isnull(i) for i in VP_2014]))
        real_len = int(len(VP_2014) / 2)
        dvisible_number = int(real_len - number_of_nan)
        biz_sum = np.nansum(VP_2014[1::2])
        VP_2014 = biz_sum / dvisible_number
        VP_2014_percentile_rank_list.append(VP_2014)

        #2015
        VP_2015 = (country_and_percentile_rank_list['VP_2015'][country])
        number_of_nan = int(sum([pd.isnull(i) for i in VP_2015]))
        real_len = int(len(VP_2015) / 2)
        dvisible_number = int(real_len - number_of_nan)
        biz_sum = np.nansum(VP_2015[1::2])
        VP_2015 = biz_sum / dvisible_number
        VP_2015_percentile_rank_list.append(VP_2015)

        #2016
        VP_2016 = (country_and_percentile_rank_list['VP_2016'][country])
        number_of_nan = int(sum([pd.isnull(i) for i in VP_2016]))
        real_len = int(len(VP_2016) / 2)
        dvisible_number = int(real_len - number_of_nan)
        biz_sum = np.nansum(VP_2016[1::2])
        VP_2016 = biz_sum / dvisible_number
        VP_2016_percentile_rank_list.append(VP_2016)

        #TOTAL
        Total_VP = (country_and_percentile_rank_list['VP_2016'][country] +
                    country_and_percentile_rank_list['VP_2015'][country] +
                    country_and_percentile_rank_list['VP_2014'][country] +
                    country_and_percentile_rank_list['VP_2013'][country] +
                    country_and_percentile_rank_list['VP_2012'][country] +
                    country_and_percentile_rank_list['VP_2011'][country])

        number_of_nan = int(sum([pd.isnull(i) for i in Total_VP]))
        real_len = int(len(Total_VP) / 2)
        dvisible_number = int(real_len - number_of_nan)
        biz_sum = np.nansum(Total_VP[1::2])
        Total_VP = biz_sum / dvisible_number
        Total_VP_percentile_rank_list.append(Total_VP)

    #PERCENTILING COMPOSITES AND FACTORIZATION
    VP_2011_percentile_rank_list_factored = []
    VP_2012_percentile_rank_list_factored = []
    VP_2013_percentile_rank_list_factored = []
    VP_2014_percentile_rank_list_factored = []
    VP_2015_percentile_rank_list_factored = []
    VP_2016_percentile_rank_list_factored = []
    Total_VP_percentile_rank_list_factored = []

    for a in VP_2011_percentile_rank_list:
        VP_2011_percentile_rank_list_factored.append(
            stats.percentileofscore(VP_2011_percentile_rank_list,
                                    a,
                                    kind='rank'))

    for b in VP_2012_percentile_rank_list:
        VP_2012_percentile_rank_list_factored.append(
            stats.percentileofscore(VP_2012_percentile_rank_list,
                                    b,
                                    kind='rank'))

    for c in VP_2013_percentile_rank_list:
        VP_2013_percentile_rank_list_factored.append(
            stats.percentileofscore(VP_2013_percentile_rank_list,
                                    c,
                                    kind='rank'))

    for d in VP_2014_percentile_rank_list:
        VP_2014_percentile_rank_list_factored.append(
            stats.percentileofscore(VP_2014_percentile_rank_list,
                                    d,
                                    kind='rank'))

    for e in VP_2015_percentile_rank_list:
        VP_2015_percentile_rank_list_factored.append(
            stats.percentileofscore(VP_2015_percentile_rank_list,
                                    e,
                                    kind='rank'))

    for f in VP_2016_percentile_rank_list:
        VP_2016_percentile_rank_list_factored.append(
            stats.percentileofscore(VP_2016_percentile_rank_list,
                                    f,
                                    kind='rank'))

    for g in Total_VP_percentile_rank_list:
        Total_VP_percentile_rank_list_factored.append(
            stats.percentileofscore(Total_VP_percentile_rank_list,
                                    g,
                                    kind='rank'))

    # Weighting of Age more heavily
    VP_2012_percentile_rank_list_factored = [
        i * 1.1 for i in VP_2012_percentile_rank_list_factored
    ]
    VP_2013_percentile_rank_list_factored = [
        i * 1.2 for i in VP_2013_percentile_rank_list_factored
    ]
    VP_2014_percentile_rank_list_factored = [
        i * 1.3 for i in VP_2014_percentile_rank_list_factored
    ]
    VP_2015_percentile_rank_list_factored = [
        i * 1.4 for i in VP_2015_percentile_rank_list_factored
    ]
    VP_2016_percentile_rank_list_factored = [
        i * 1.5 for i in VP_2016_percentile_rank_list_factored
    ]
    Total_VP_percentile_rank_list_factored = [
        i * 1.6 for i in Total_VP_percentile_rank_list_factored
    ]

    total_VP_rank = {}
    for country in country_name_list:
        country_num = int(country_numberifier(country))
        VP_rank_data_together = (
            VP_2011_percentile_rank_list_factored[country_num],
            VP_2012_percentile_rank_list_factored[country_num],
            VP_2013_percentile_rank_list_factored[country_num],
            VP_2014_percentile_rank_list_factored[country_num],
            VP_2015_percentile_rank_list_factored[country_num],
            VP_2016_percentile_rank_list_factored[country_num],
            Total_VP_percentile_rank_list_factored[country_num])
        total_VP_rank[str(country)] = VP_rank_data_together

    VP_rank_aggregate_factored = []
    for country in country_name_list:
        tbr = total_VP_rank[country]
        #Factoring for number of missing data Fields and averaging the raw score
        number_of_nan = int(sum([pd.isnull(i) for i in tbr]))
        real_len = len(tbr)
        dvisible_number = int(real_len - number_of_nan)
        num_sum = np.nansum(tbr)
        tbr = num_sum / dvisible_number

        VP_rank_aggregate_factored.append(tbr)

    return {'VP_rank_aggregate_factored': VP_rank_aggregate_factored}
def GRFM(country_name_list, country_and_percentile_rank_list):
    outlook_climate_percentile_rank_list = []
    political_climate_percentile_rank_list = []
    financial_climate_percentile_rank_list = []
    global_climate_percentile_rank_list = []
    UN_climate_percentile_rank_list = []

    for country in country_name_list:
        country = int(country_numberifier(country))
        Outlook = (
            country_and_percentile_rank_list['World Giving Index'][country] +
            country_and_percentile_rank_list['Science and Technology'][country]
            + country_and_percentile_rank_list['Culture'][country] +
            country_and_percentile_rank_list['Prosperity and Equality']
            [country] +
            country_and_percentile_rank_list['Health and Wellbeing'][country])
        #Factoring for number of missing data Fields and averaging the raw score
        number_of_nan = int(sum([pd.isnull(i) for i in Outlook]))
        real_len = int(len(Outlook) / 2)
        dvisible_number = int(real_len - number_of_nan)
        biz_sum = np.nansum(Outlook[1::2])
        Outlook = biz_sum / dvisible_number

        outlook_climate_percentile_rank_list.append(Outlook)

        Political_Climate = (
            country_and_percentile_rank_list['Political Freedom'][country] +
            country_and_percentile_rank_list['Civil Liberties'][country] +
            country_and_percentile_rank_list['Freedom Status'][country] +
            country_and_percentile_rank_list['Freedom from Corruption']
            [country] +
            country_and_percentile_rank_list['Political Terror Scale'][country]
            + country_and_percentile_rank_list['Press Freedom Rank'][country])
        #Factoring for number of missing data Fields and averaging the raw score
        number_of_nan = int(sum([pd.isnull(i) for i in Political_Climate]))
        real_len = int(len(Political_Climate) / 2)
        dvisible_number = int(real_len - number_of_nan)
        num_sum = np.nansum(Political_Climate[1::2])
        Political_Climate = num_sum / dvisible_number
        political_climate_percentile_rank_list.append(Political_Climate)

        Financial_Climate = (
            country_and_percentile_rank_list['Gini Coefficent'][country] +
            country_and_percentile_rank_list['Labor Freedom'][country] +
            country_and_percentile_rank_list['Tariff Rate in Percentage']
            [country] +
            country_and_percentile_rank_list['Income Tax Rate in Percentage']
            [country] +
            country_and_percentile_rank_list['Tax Burden as Percent of GDP']
            [country])
        #Factoring for number of missing data Fields and averaging the raw score
        number_of_nan = int(sum([pd.isnull(i) for i in Financial_Climate]))
        real_len = int(len(Financial_Climate) / 2)
        dvisible_number = int(real_len - number_of_nan)
        num_sum = np.nansum(Financial_Climate[1::2])
        Financial_Climate = num_sum / dvisible_number
        financial_climate_percentile_rank_list.append(Financial_Climate)

        Global_Climate = (
            country_and_percentile_rank_list['Good Country Overall Score']
            [country] + country_and_percentile_rank_list[
                'International Peace and Security'][country] +
            country_and_percentile_rank_list['World Order'][country] +
            country_and_percentile_rank_list['Planet and Climate'][country])
        #Factoring for number of missing data Fields and averaging the raw score
        number_of_nan = int(sum([pd.isnull(i) for i in Global_Climate]))
        real_len = int(len(Global_Climate) / 2)
        dvisible_number = int(real_len - number_of_nan)
        num_sum = np.nansum(Global_Climate[1::2])
        Global_Climate = num_sum / dvisible_number
        global_climate_percentile_rank_list.append(Global_Climate)

        UN_Rank = (country_and_percentile_rank_list[
            'Voting correlation in Percentage at UN with the US'][country])
        #Factoring for number of missing data Fields and averaging the raw score
        number_of_nan = int(sum([pd.isnull(i) for i in UN_Rank]))
        real_len = int(len(UN_Rank) / 2)
        dvisible_number = int(real_len - number_of_nan)
        num_sum = np.nansum(UN_Rank[1::2])
        UN_Rank = num_sum / dvisible_number
        UN_climate_percentile_rank_list.append(UN_Rank)

    #PERCENTILING COMPOSITES AND FACTORIZATION
    outlook_climate_percentile_rank_list_factored = []
    political_climate_percentile_rank_list_factored = []
    financial_climate_percentile_rank_list_factored = []
    global_climate_percentile_rank_list_factored = []
    UN_climate_percentile_rank_list_factored = []

    for a in outlook_climate_percentile_rank_list:
        outlook_climate_percentile_rank_list_factored.append(
            stats.percentileofscore(outlook_climate_percentile_rank_list,
                                    a,
                                    kind='rank'))

    for b in political_climate_percentile_rank_list:
        political_climate_percentile_rank_list_factored.append(
            stats.percentileofscore(political_climate_percentile_rank_list,
                                    b,
                                    kind='rank'))

    for c in financial_climate_percentile_rank_list:
        financial_climate_percentile_rank_list_factored.append(
            stats.percentileofscore(financial_climate_percentile_rank_list,
                                    c,
                                    kind='rank'))

    for d in global_climate_percentile_rank_list:
        global_climate_percentile_rank_list_factored.append(
            stats.percentileofscore(global_climate_percentile_rank_list,
                                    d,
                                    kind='rank'))

    for e in UN_climate_percentile_rank_list:
        UN_climate_percentile_rank_list_factored.append(
            stats.percentileofscore(UN_climate_percentile_rank_list,
                                    e,
                                    kind='rank'))

    total_governmental_rank = {}
    for country in country_name_list:
        country_num = int(country_numberifier(country))
        governmental_rank_data_together = (
            outlook_climate_percentile_rank_list_factored[country_num],
            political_climate_percentile_rank_list_factored[country_num],
            financial_climate_percentile_rank_list_factored[country_num],
            global_climate_percentile_rank_list_factored[country_num],
            UN_climate_percentile_rank_list_factored[country_num])
        total_governmental_rank[str(country)] = governmental_rank_data_together

    governmental_relations_aggregate_factored = []
    for country in country_name_list:
        tbr = total_governmental_rank[country]
        #Factoring for number of missing data Fields and averaging the raw score
        number_of_nan = int(sum([pd.isnull(i) for i in tbr]))
        real_len = len(tbr)
        dvisible_number = int(real_len - number_of_nan)
        num_sum = np.nansum(tbr)
        tbr = num_sum / dvisible_number
        governmental_relations_aggregate_factored.append(tbr)

    return {
        'governmental_relations_aggregate_factored':
        governmental_relations_aggregate_factored
    }
def SSFM(country_name_list, country_and_percentile_rank_list):
    Sec_of_State_2011_percentile_rank_list = []
    Sec_of_State_2012_percentile_rank_list = []
    Sec_of_State_2013_percentile_rank_list = []
    Sec_of_State_2014_percentile_rank_list = []
    Sec_of_State_2015_percentile_rank_list = []
    Sec_of_State_2016_percentile_rank_list = []
    Sec_of_State_2017_percentile_rank_list = []
    Total_Sec_of_State_percentile_rank_list = []

    for country in country_name_list:
        country = int(country_numberifier(country))
        Sec_of_State_2011 = (
            country_and_percentile_rank_list['Sec_of_State_2011'][country])

        number_of_nan = int(sum([pd.isnull(i) for i in Sec_of_State_2011]))
        real_len = int(len(Sec_of_State_2011) / 2)
        dvisible_number = int(real_len - number_of_nan)
        biz_sum = np.nansum(Sec_of_State_2011[1::2])
        Sec_of_State_2011 = biz_sum / dvisible_number
        Sec_of_State_2011_percentile_rank_list.append(Sec_of_State_2011)

        #2012
        Sec_of_State_2012 = (
            country_and_percentile_rank_list['Sec_of_State_2012'][country])
        number_of_nan = int(sum([pd.isnull(i) for i in Sec_of_State_2012]))
        real_len = int(len(Sec_of_State_2012) / 2)
        dvisible_number = int(real_len - number_of_nan)
        biz_sum = np.nansum(Sec_of_State_2012[1::2])
        Sec_of_State_2012 = biz_sum / dvisible_number
        Sec_of_State_2012_percentile_rank_list.append(Sec_of_State_2012)

        #2013
        Sec_of_State_2013 = (
            country_and_percentile_rank_list['Sec_of_State_2013'][country])
        number_of_nan = int(sum([pd.isnull(i) for i in Sec_of_State_2013]))
        real_len = int(len(Sec_of_State_2013) / 2)
        dvisible_number = int(real_len - number_of_nan)
        biz_sum = np.nansum(Sec_of_State_2013[1::2])
        Sec_of_State_2013 = biz_sum / dvisible_number
        Sec_of_State_2013_percentile_rank_list.append(Sec_of_State_2013)

        #2014
        Sec_of_State_2014 = (
            country_and_percentile_rank_list['Sec_of_State_2014'][country])
        number_of_nan = int(sum([pd.isnull(i) for i in Sec_of_State_2014]))
        real_len = int(len(Sec_of_State_2014) / 2)
        dvisible_number = int(real_len - number_of_nan)
        biz_sum = np.nansum(Sec_of_State_2014[1::2])
        Sec_of_State_2014 = biz_sum / dvisible_number
        Sec_of_State_2014_percentile_rank_list.append(Sec_of_State_2014)

        #2015
        Sec_of_State_2015 = (
            country_and_percentile_rank_list['Sec_of_State_2015'][country])
        number_of_nan = int(sum([pd.isnull(i) for i in Sec_of_State_2015]))
        real_len = int(len(Sec_of_State_2015) / 2)
        dvisible_number = int(real_len - number_of_nan)
        biz_sum = np.nansum(Sec_of_State_2015[1::2])
        Sec_of_State_2015 = biz_sum / dvisible_number
        Sec_of_State_2015_percentile_rank_list.append(Sec_of_State_2015)

        #2016
        Sec_of_State_2016 = (
            country_and_percentile_rank_list['Sec_of_State_2016'][country])
        number_of_nan = int(sum([pd.isnull(i) for i in Sec_of_State_2016]))
        real_len = int(len(Sec_of_State_2016) / 2)
        dvisible_number = int(real_len - number_of_nan)
        biz_sum = np.nansum(Sec_of_State_2016[1::2])
        Sec_of_State_2016 = biz_sum / dvisible_number
        Sec_of_State_2016_percentile_rank_list.append(Sec_of_State_2016)

        #2017
        Sec_of_State_2017 = (
            country_and_percentile_rank_list['Sec_of_State_2017'][country])
        number_of_nan = int(sum([pd.isnull(i) for i in Sec_of_State_2017]))
        real_len = int(len(Sec_of_State_2017) / 2)
        dvisible_number = int(real_len - number_of_nan)
        biz_sum = np.nansum(Sec_of_State_2017[1::2])
        Sec_of_State_2017 = biz_sum / dvisible_number
        Sec_of_State_2017_percentile_rank_list.append(Sec_of_State_2017)

        #TOTAL
        Total_Sec_of_State = (
            country_and_percentile_rank_list['Sec_of_State_2017'][country] +
            country_and_percentile_rank_list['Sec_of_State_2016'][country] +
            country_and_percentile_rank_list['Sec_of_State_2015'][country] +
            country_and_percentile_rank_list['Sec_of_State_2014'][country] +
            country_and_percentile_rank_list['Sec_of_State_2013'][country] +
            country_and_percentile_rank_list['Sec_of_State_2012'][country] +
            country_and_percentile_rank_list['Sec_of_State_2011'][country])

        number_of_nan = int(sum([pd.isnull(i) for i in Total_Sec_of_State]))
        real_len = int(len(Total_Sec_of_State) / 2)
        dvisible_number = int(real_len - number_of_nan)
        biz_sum = np.nansum(Total_Sec_of_State[1::2])
        Total_Sec_of_State = biz_sum / dvisible_number
        Total_Sec_of_State_percentile_rank_list.append(Total_Sec_of_State)

    #PERCENTILING COMPOSITES AND FACTORIZATION
    Sec_of_State_2011_percentile_rank_list_factored = []
    Sec_of_State_2012_percentile_rank_list_factored = []
    Sec_of_State_2013_percentile_rank_list_factored = []
    Sec_of_State_2014_percentile_rank_list_factored = []
    Sec_of_State_2015_percentile_rank_list_factored = []
    Sec_of_State_2016_percentile_rank_list_factored = []
    Sec_of_State_2017_percentile_rank_list_factored = []
    Total_Sec_of_State_percentile_rank_list_factored = []

    for a in Sec_of_State_2011_percentile_rank_list:
        Sec_of_State_2011_percentile_rank_list_factored.append(
            stats.percentileofscore(Sec_of_State_2011_percentile_rank_list,
                                    a,
                                    kind='rank'))

    for b in Sec_of_State_2012_percentile_rank_list:
        Sec_of_State_2012_percentile_rank_list_factored.append(
            stats.percentileofscore(Sec_of_State_2012_percentile_rank_list,
                                    b,
                                    kind='rank'))

    for c in Sec_of_State_2013_percentile_rank_list:
        Sec_of_State_2013_percentile_rank_list_factored.append(
            stats.percentileofscore(Sec_of_State_2013_percentile_rank_list,
                                    c,
                                    kind='rank'))

    for d in Sec_of_State_2014_percentile_rank_list:
        Sec_of_State_2014_percentile_rank_list_factored.append(
            stats.percentileofscore(Sec_of_State_2014_percentile_rank_list,
                                    d,
                                    kind='rank'))

    for e in Sec_of_State_2015_percentile_rank_list:
        Sec_of_State_2015_percentile_rank_list_factored.append(
            stats.percentileofscore(Sec_of_State_2015_percentile_rank_list,
                                    e,
                                    kind='rank'))

    for f in Sec_of_State_2016_percentile_rank_list:
        Sec_of_State_2016_percentile_rank_list_factored.append(
            stats.percentileofscore(Sec_of_State_2016_percentile_rank_list,
                                    f,
                                    kind='rank'))

    for j in Sec_of_State_2017_percentile_rank_list:
        Sec_of_State_2017_percentile_rank_list_factored.append(
            stats.percentileofscore(Sec_of_State_2017_percentile_rank_list,
                                    j,
                                    kind='rank'))

    for g in Total_Sec_of_State_percentile_rank_list:
        Total_Sec_of_State_percentile_rank_list_factored.append(
            stats.percentileofscore(Total_Sec_of_State_percentile_rank_list,
                                    g,
                                    kind='rank'))

    # Weighting of Age more heavily
    Sec_of_State_2012_percentile_rank_list_factored = [
        i * 1.1 for i in Sec_of_State_2012_percentile_rank_list_factored
    ]
    Sec_of_State_2013_percentile_rank_list_factored = [
        i * 1.2 for i in Sec_of_State_2013_percentile_rank_list_factored
    ]
    Sec_of_State_2014_percentile_rank_list_factored = [
        i * 1.3 for i in Sec_of_State_2014_percentile_rank_list_factored
    ]
    Sec_of_State_2015_percentile_rank_list_factored = [
        i * 1.4 for i in Sec_of_State_2015_percentile_rank_list_factored
    ]
    Sec_of_State_2016_percentile_rank_list_factored = [
        i * 1.5 for i in Sec_of_State_2016_percentile_rank_list_factored
    ]
    Sec_of_State_2017_percentile_rank_list_factored = [
        i * 1.6 for i in Sec_of_State_2017_percentile_rank_list_factored
    ]
    Total_Sec_of_State_percentile_rank_list_factored = [
        i * 1.7 for i in Total_Sec_of_State_percentile_rank_list_factored
    ]

    total_sec_state_rank = {}
    for country in country_name_list:
        country_num = int(country_numberifier(country))
        sec_state_rank_data_together = (
            Sec_of_State_2011_percentile_rank_list_factored[country_num],
            Sec_of_State_2012_percentile_rank_list_factored[country_num],
            Sec_of_State_2013_percentile_rank_list_factored[country_num],
            Sec_of_State_2014_percentile_rank_list_factored[country_num],
            Sec_of_State_2015_percentile_rank_list_factored[country_num],
            Sec_of_State_2016_percentile_rank_list_factored[country_num],
            Sec_of_State_2017_percentile_rank_list_factored[country_num],
            Total_Sec_of_State_percentile_rank_list_factored[country_num])
        total_sec_state_rank[str(country)] = sec_state_rank_data_together

    sec_state_rank_aggregate_factored = []
    for country in country_name_list:
        tbr = total_sec_state_rank[country]
        #Factoring for number of missing data Fields and averaging the raw score
        number_of_nan = int(sum([pd.isnull(i) for i in tbr]))
        real_len = len(tbr)
        dvisible_number = int(real_len - number_of_nan)
        num_sum = np.nansum(tbr)
        tbr = num_sum / dvisible_number

        sec_state_rank_aggregate_factored.append(tbr)

    return {
        'sec_state_rank_aggregate_factored': sec_state_rank_aggregate_factored
    }
Exemple #9
0
def SPFM(country_name_list, country_and_percentile_rank_list):
    military_power_percentile_rank_list = []
    foreign_power_percentile_rank_list = []
    nuclear_power_percentile_rank_list = []
    alliance_climate_percentile_rank_list = []
    rank_percentile_rank_list = []

    for country in country_name_list:
        country = int(country_numberifier(country))
        Military_Power = (country_and_percentile_rank_list['TOTAL US MILITARY Personnel Abroad'][country] +
                                country_and_percentile_rank_list['US Military Bases Abroad'][country])
        #Factoring for number of missing data Fields and averaging the raw score
        number_of_nan = int(sum([pd.isnull(i) for i in Military_Power]))
        real_len = int(len(Military_Power)/2)
        dvisible_number = int(real_len - number_of_nan)
        biz_sum = np.nansum(Military_Power[1::2])
        Military_Power = biz_sum / dvisible_number
        military_power_percentile_rank_list.append(Military_Power)


        Foreign_Power = (country_and_percentile_rank_list['Foreign Military Finance'][country] +
                                country_and_percentile_rank_list['Personel in Standing Army'][country])
        #Factoring for number of missing data Fields and averaging the raw score
        number_of_nan = int(sum([pd.isnull(i) for i in Foreign_Power]))
        real_len = int(len(Foreign_Power)/2)
        dvisible_number = int(real_len - number_of_nan)
        num_sum = np.nansum(Foreign_Power[1::2])
        Foreign_Power_num = num_sum / dvisible_number
        foreign_power_percentile_rank_list.append(Foreign_Power_num)

        Nuclear_Technology = (country_and_percentile_rank_list['Nuclear Technology'][country])
        #Factoring for number of missing data Fields and averaging the raw score
        number_of_nan = int(sum([pd.isnull(i) for i in Nuclear_Technology]))
        real_len = int(len(Nuclear_Technology)/2)
        dvisible_number = int(real_len - number_of_nan)
        num_sum = np.nansum(Nuclear_Technology[1::2])
        Nuclear_Technology = num_sum / dvisible_number
        nuclear_power_percentile_rank_list.append(Nuclear_Technology)

        Alliance_Climate = (country_and_percentile_rank_list['Alliances'][country] +
                                country_and_percentile_rank_list['Shared Multilateral Organizations'][country])

        #Factoring for number of missing data Fields and averaging the raw score
        number_of_nan = int(sum([pd.isnull(i) for i in Alliance_Climate]))
        real_len = int(len(Alliance_Climate)/2)
        dvisible_number = int(real_len - number_of_nan)
        num_sum = np.nansum(Alliance_Climate[1::2])
        Alliance_Climate = num_sum / dvisible_number
        alliance_climate_percentile_rank_list.append(Alliance_Climate)

        Rankings = (country_and_percentile_rank_list['Composite Index of National Capability'][country] +
                                country_and_percentile_rank_list['Global Peace Index Raw Score'][country])

        #Factoring for number of missing data Fields and averaging the raw score
        number_of_nan = int(sum([pd.isnull(i) for i in Rankings]))
        real_len = int(len(Rankings)/2)
        dvisible_number = int(real_len - number_of_nan)
        num_sum = np.nansum(Rankings[1::2])
        Rankings = num_sum / dvisible_number
        rank_percentile_rank_list.append(Rankings)

    #PERCENTILING COMPOSITES AND FACTORIZATION
    military_power_percentile_rank_list_factored = []
    alliance_climate_percentile_rank_list_factored = []
    rank_percentile_rank_list_factored = []
    foreign_power_percentile_rank_list_factored = []

    for a in military_power_percentile_rank_list:
        military_power_percentile_rank_list_factored.append(stats.percentileofscore(military_power_percentile_rank_list, a, kind='rank'))

    for c in alliance_climate_percentile_rank_list:
        alliance_climate_percentile_rank_list_factored.append(stats.percentileofscore(alliance_climate_percentile_rank_list, c, kind='rank'))

    for d in rank_percentile_rank_list:
        rank_percentile_rank_list_factored.append(stats.percentileofscore(rank_percentile_rank_list, d, kind='rank'))

    for j in foreign_power_percentile_rank_list:
        foreign_power_percentile_rank_list_factored.append(stats.percentileofscore(foreign_power_percentile_rank_list, j, kind='rank'))

    # Weighting of Size more heavily
    """
    people_power_percentile_rank_list_factored = [i * 3 for i in people_power_percentile_rank_list_factored]
    """
    nuclear_power_percentile_rank_list = [i * 4 for i in nuclear_power_percentile_rank_list]

    total_security_rank = {}
    for country in country_name_list:
        country_num = int(country_numberifier(country))
        security_rank_data_together = (military_power_percentile_rank_list_factored[country_num],
                                        nuclear_power_percentile_rank_list[country_num],
                                        alliance_climate_percentile_rank_list_factored[country_num],
                                        rank_percentile_rank_list_factored[country_num],
                                        foreign_power_percentile_rank_list_factored[country_num])
        total_security_rank[str(country)] = security_rank_data_together

    security_rank_aggregate_factored = []
    for country in country_name_list:
        tbr = total_security_rank[country]
        #Factoring for number of missing data Fields and averaging the raw score
        number_of_nan = int(sum([pd.isnull(i) for i in tbr]))
        real_len = len(tbr)
        dvisible_number = int(real_len - number_of_nan)
        num_sum = np.nansum(tbr)
        tbr = num_sum / dvisible_number
        new_tbr = float(tbr) / 1.51
        security_rank_aggregate_factored.append(new_tbr)

    return {'security_rank_aggregate_factored':security_rank_aggregate_factored}
Exemple #10
0
def main():
    todays_date = datetime.fromtimestamp(int(time.time())).strftime('%B-%d-%Y')
    #To add prior to adding any of the data
    conn = engine.connect()

    table_list = [
        'Business_Relations', 'Trade_Relations', 'Governmental_Perspective',
        'Country_Profile', 'Security', 'Cultural_Diffusion', 'Prestige',
        'Sec_State_Bureaucratic_Exchange', 'Presidential_Exchange'
    ]
    for tab in table_list:
        table_name = tab
        country_name_list = getting_all_the_column_names_from_the_table(
            table_name)['country_name_list']
        column_name_list = getting_all_the_column_names_from_the_table(
            table_name)['column_name_list']
        country_and_percentile_rank_list = percentile_ranking(
            column_name_list, country_name_list,
            table_name)['country_and_percentile_rank_list']
        formula(country_name_list, country_and_percentile_rank_list,
                table_name)

    country_exceptions_list = [
        'Nauru', 'Vatican City', 'Somalia', 'Andorra', 'Monaco', 'Cook Islands'
    ]
    #######################################################################################################
    ##### ROW INITIALIZATION
    #######################################################################################################
    conn.execute(
        '''DELETE FROM "Sec_State_SCORE2" WHERE "Date" = '{}';'''.format(
            todays_date))
    conn.execute('''INSERT INTO "Sec_State_SCORE2" VALUES ('{}');'''.format(
        todays_date))
    #######################################################################################################
    conn.execute(
        '''DELETE FROM "Presidential_SCORE2" WHERE "Date" = '{}';'''.format(
            todays_date))
    conn.execute('''INSERT INTO "Presidential_SCORE2" VALUES ('{}');'''.format(
        todays_date))
    #######################################################################################################
    conn.execute(
        '''DELETE FROM "BR_SCORE2" WHERE "Date" = '{}';'''.format(todays_date))
    conn.execute(
        '''INSERT INTO "BR_SCORE2" VALUES ('{}');'''.format(todays_date))
    #######################################################################################################
    conn.execute('''DELETE FROM "Trade_SCORE2" WHERE "Date" = '{}';'''.format(
        todays_date))
    conn.execute(
        '''INSERT INTO "Trade_SCORE2" VALUES ('{}');'''.format(todays_date))
    #######################################################################################################
    conn.execute(
        '''DELETE FROM "GP_SCORE2" WHERE "Date" = '{}';'''.format(todays_date))
    conn.execute(
        '''INSERT INTO "GP_SCORE2" VALUES ('{}');'''.format(todays_date))
    #######################################################################################################
    conn.execute(
        '''DELETE FROM "Prestige_SCORE2" WHERE "Date" = '{}';'''.format(
            todays_date))
    conn.execute(
        '''INSERT INTO "Prestige_SCORE2" VALUES ('{}');'''.format(todays_date))
    #######################################################################################################
    conn.execute(
        '''DELETE FROM "Security_SCORE2" WHERE "Date" = '{}';'''.format(
            todays_date))
    conn.execute(
        '''INSERT INTO "Security_SCORE2" VALUES ('{}');'''.format(todays_date))
    #######################################################################################################
    conn.execute(
        '''DELETE FROM "CD_SCORE2" WHERE "Date" = '{}';'''.format(todays_date))
    conn.execute(
        '''INSERT INTO "CD_SCORE2" VALUES ('{}');'''.format(todays_date))
    #######################################################################################################
    conn.execute(
        '''DELETE FROM "CProfile_SCORE2" WHERE "Date" = '{}';'''.format(
            todays_date))
    conn.execute(
        '''INSERT INTO "CProfile_SCORE2" VALUES ('{}');'''.format(todays_date))
    #######################################################################################################

    QP_Final_Value_not_ranked = []
    for country in country_name_list:
        temp_value_list = []
        for tab in table_list:
            count_num = country_numberifier(country)
            table_name = tab
            #print(country, float(QP_value[table_name][count_num]))
            if table_name == 'Sec_State_Bureaucratic_Exchange':
                conn.execute(
                    '''UPDATE "Sec_State_SCORE2" SET "{}" = '{}' WHERE "Date" = '{}';'''
                    .format(country, float(QP_value[table_name][count_num]),
                            todays_date))
                #print('Sec_State_Bureaucratic_Exchange', country, QP_value[table_name][count_num])
                temp_value_list.append(
                    float(QP_value[table_name][count_num]) * 1.8)

            if table_name == 'Presidential_Exchange':
                conn.execute(
                    '''UPDATE "Presidential_SCORE2" SET "{}" = '{}' WHERE "Date" = '{}';'''
                    .format(country, float(QP_value[table_name][count_num]),
                            todays_date))
                #print('Presidential_Exchange', country, QP_value[table_name][count_num])
                temp_value_list.append(
                    float(QP_value[table_name][count_num]) * 1.7)

            if table_name == 'Business_Relations':
                #Some Small countries don't have a BR Score
                if country in country_exceptions_list:
                    pass
                else:
                    conn.execute(
                        '''UPDATE "BR_SCORE2" SET "{}" = '{}' WHERE "Date" = '{}';'''
                        .format(country,
                                float(QP_value[table_name][count_num]),
                                todays_date))

                #print('Business_Relations', country, QP_value[table_name][count_num])
                temp_value_list.append(
                    float(QP_value[table_name][count_num]) * 1.6)

            if table_name == 'Trade_Relations':
                conn.execute(
                    '''UPDATE "Trade_SCORE2" SET "{}" = '{}' WHERE "Date" = '{}';'''
                    .format(country, float(QP_value[table_name][count_num]),
                            todays_date))
                #print('Trade_Relations', country, QP_value[table_name][count_num])
                temp_value_list.append(
                    float(QP_value[table_name][count_num]) * 1.5)

            if table_name == 'Governmental_Perspective':
                conn.execute(
                    '''UPDATE "GP_SCORE2" SET "{}" = '{}' WHERE "Date" = '{}';'''
                    .format(country, float(QP_value[table_name][count_num]),
                            todays_date))
                #print('Governmental_Perspective', country, QP_value[table_name][count_num])
                temp_value_list.append(
                    float(QP_value[table_name][count_num]) * 1.4)

            if table_name == 'Prestige':
                conn.execute(
                    '''UPDATE "Prestige_SCORE2" SET "{}" = '{}' WHERE "Date" = '{}';'''
                    .format(country, float(QP_value[table_name][count_num]),
                            todays_date))
                #print('Prestige', country, QP_value[table_name][count_num])
                temp_value_list.append(
                    float(QP_value[table_name][count_num]) * 1.3)

            if table_name == 'Security':
                conn.execute(
                    '''UPDATE "Security_SCORE2" SET "{}" = '{}' WHERE "Date" = '{}';'''
                    .format(country, float(QP_value[table_name][count_num]),
                            todays_date))
                #print('Security', country, QP_value[table_name][count_num])
                temp_value_list.append(
                    float(QP_value[table_name][count_num]) * 1.2)

            if table_name == 'Cultural_Diffusion':
                conn.execute(
                    '''UPDATE "CD_SCORE2" SET "{}" = '{}' WHERE "Date" = '{}';'''
                    .format(country, float(QP_value[table_name][count_num]),
                            todays_date))
                #print('Cultural_Diffusion', country, QP_value[table_name][count_num])
                temp_value_list.append(
                    float(QP_value[table_name][count_num]) * 1.1)

            if table_name == 'Country_Profile':
                conn.execute(
                    '''UPDATE "CProfile_SCORE2" SET "{}" = '{}' WHERE "Date" = '{}';'''
                    .format(country, float(QP_value[table_name][count_num]),
                            todays_date))
                #print('Country_Profile', country, QP_value[table_name][count_num])
                temp_value_list.append(QP_value[table_name][count_num])

            if len(temp_value_list) == 9:
                number_of_nan = int(
                    sum([pd.isnull(i) for i in temp_value_list]))
                real_len = int(len(temp_value_list) / 2)
                dvisible_number = int(real_len - number_of_nan)
                num_sum = np.nansum(temp_value_list)
                temp_value_list = num_sum / dvisible_number
                QP_Final_Value_not_ranked.append(temp_value_list)

    new_rank_percentile_rank_list_factored = []
    for v in QP_Final_Value_not_ranked:
        new_rank_percentile_rank_list_factored.append(
            stats.percentileofscore(QP_Final_Value_not_ranked, v, kind='rank'))

    ##########################################################################
    #Current_Military_Engagement AKA ARE WE BOMBING YOU AND IF SO, HOW LONG AGO?
    ##########################################################################
    hostilities_query = conn.execute(
        '''SELECT "Current_Military_Engagement" FROM "Security" ORDER BY "Country_Name";'''
    )
    hostilities_query_list = hostilities_query.cursor.fetchall()
    country_name_query = conn.execute(
        '''SELECT "Country_Name" FROM "Security" ORDER BY "Country_Name";''')
    cnl = country_name_query.cursor.fetchall()
    date_format = '%B-%d-%Y'
    todays_date = datetime.fromtimestamp(int(time.time())).strftime('%B-%d-%Y')
    score_to_subtract_dict = {}
    for index, value in enumerate(hostilities_query_list):
        if len(value[0]) > 2:
            a = datetime.strptime(value[0], date_format)
            b = datetime.strptime(todays_date, date_format)
            delta = b - a
            days_til_penalty_removed = 1000 - int(delta.days)
            days_til_penalty_removed_as_percentage = days_til_penalty_removed / 1000
            score_to_subtract = days_til_penalty_removed_as_percentage * 50
            score_to_subtract_dict[cnl[index][0]] = score_to_subtract

    QP_Final_Value = {}
    for country in country_name_list:
        count_num = country_numberifier(country)
        QP_Final_Value[country] = (
            new_rank_percentile_rank_list_factored[count_num] * 4) - 200
        #print(country, score_to_subtract_dict.get(country))
        if score_to_subtract_dict.get(country) != None:
            current_score = QP_Final_Value[country]
            QP_Final_Value[
                country] = current_score - score_to_subtract_dict[country]
    ##########################################################################
    #End Current_Military_Engagement
    ##########################################################################

    conn.execute(
        '''DELETE FROM "QP_SCORE2" WHERE "Date" = '{}';'''.format(todays_date))
    conn.execute(
        '''INSERT INTO "QP_SCORE2" VALUES ('{}');'''.format(todays_date))

    for w in sorted(QP_Final_Value, key=QP_Final_Value.get, reverse=True):
        print(w, QP_Final_Value[w])
        conn.execute(
            '''UPDATE "QP_SCORE2" SET "{}" = '{}' WHERE "Date" = '{}';'''.
            format(w, float(QP_Final_Value[w]), todays_date))

    time2 = time.time()
    print("Total time to run ", int(time2 - time1), "seconds")
Exemple #11
0
def formula(country_name_list, country_and_percentile_rank_list, table_name):
    if table_name == 'Business_Relations':
        from Business_Relations_Formula_Maker import BRFM
        business_relations_aggregate_factored = BRFM(
            country_name_list, country_and_percentile_rank_list
        )['business_relations_aggregate_factored']
        QP_value['Business_Relations'] = business_relations_aggregate_factored
        print(table_name, 'imported')
    if table_name == 'Trade_Relations':
        from Trade_Relations_Formula_Maker import TRFM
        trade_relations_aggregate_factored = TRFM(
            country_name_list, country_and_percentile_rank_list
        )['trade_relations_aggregate_factored']
        QP_value['Trade_Relations'] = trade_relations_aggregate_factored
        print(table_name, 'imported')
    if table_name == 'Governmental_Perspective':
        from Governmental_Perspective_Formula_Maker import GRFM, UN_Grabber
        governmental_relations_aggregate_factored = GRFM(
            country_name_list, country_and_percentile_rank_list
        )['governmental_relations_aggregate_factored']
        QP_value[
            'Governmental_Perspective'] = governmental_relations_aggregate_factored
        print(table_name, 'imported')
    if table_name == 'Country_Profile':
        from Country_Profile import CPFM
        country_profile_aggregate_factored = CPFM(
            country_name_list, country_and_percentile_rank_list
        )['country_profile_aggregate_factored']
        QP_value['Country_Profile'] = country_profile_aggregate_factored
        print(table_name, 'imported')
    if table_name == 'Security':
        from Security_Formula_Maker import SPFM
        security_rank_aggregate_factored = SPFM(
            country_name_list, country_and_percentile_rank_list
        )['security_rank_aggregate_factored']
        QP_value['Security'] = security_rank_aggregate_factored
        print(table_name, 'imported')
    if table_name == 'Cultural_Diffusion':
        from Cultural_Diffusion_Formula_Maker import CDFM
        cultural_diffusion_aggregate_factored = CDFM(
            country_name_list, country_and_percentile_rank_list
        )['cultural_diffusion_aggregate_factored']
        QP_value['Cultural_Diffusion'] = cultural_diffusion_aggregate_factored
        print(table_name, 'imported')
    if table_name == 'Prestige':
        from Prestige_Formula_Maker import PFM
        prestige_rank_aggregate_factored = PFM(
            country_name_list, country_and_percentile_rank_list
        )['prestige_rank_aggregate_factored']
        QP_value['Prestige'] = prestige_rank_aggregate_factored
        print(table_name, 'imported')
    if table_name == 'Sec_State_Bureaucratic_Exchange':
        from Sec_State_Formula_Maker import SSFM
        sec_state_rank_aggregate_factored = SSFM(
            country_name_list, country_and_percentile_rank_list
        )['sec_state_rank_aggregate_factored']
        QP_value[
            'Sec_State_Bureaucratic_Exchange'] = sec_state_rank_aggregate_factored
        print(table_name, 'imported')
    if table_name == 'Presidential_Exchange':
        from Presidential_Exchange_Formula_Maker import PEFM
        pres_rank_aggregate_factored = PEFM(
            country_name_list,
            country_and_percentile_rank_list)['Pres_rank_aggregate_factored']
        from Vice_Presidential_Exchange_Formula_Maker import VPFM
        vp_rank_aggregate_factored = VPFM(
            country_name_list,
            country_and_percentile_rank_list)['VP_rank_aggregate_factored']
        from Joint_Meetings_List import JMFM
        jm_rank_aggregate_factored = JMFM(
            country_name_list,
            country_and_percentile_rank_list)['JM_rank_aggregate_factored']

        Pres_VP_Joint_BEX = []
        for country in country_name_list:
            count_num = country_numberifier(country)
            Pres_VP_Joint_BEX.append(
                float(
                    float(pres_rank_aggregate_factored[count_num] * 3) +
                    float(vp_rank_aggregate_factored[count_num] * 2) +
                    jm_rank_aggregate_factored[count_num]))

        Pres_VP_Joint_BEX_factored = []
        for a in Pres_VP_Joint_BEX:
            Pres_VP_Joint_BEX_factored.append(
                stats.percentileofscore(Pres_VP_Joint_BEX, a, kind='rank'))

        QP_value['Presidential_Exchange'] = Pres_VP_Joint_BEX_factored
        print(table_name, 'imported')