if this_c == 'hist': hist_sc[mn,do] = rain4mon elif this_c == 'fut': fut_sc[mn,do] = rain4mon if whplot != 'meanpr': wlon = wlon_picks[do] elon = elon_picks[do] # Then subset by longitude print 'Subsetting by latitude?' print 'Selecting CBs between '+str(wlon)+' and '+str(elon) dates_ln, cXs_ln, cYs_ln, degs_ln, chs_ln, keys_ln, daynos_ln, tworecdt_ln = \ sset.sel_cen_lon(wlon,elon, dates_dd, cXs_dd, cYs_dd, degs_dd, chs_dd,\ keys_dd, daynos_dd, tworecdt_dd) nttt=len(dates_ln) if whplot == 'number': # Get seasonal cycle scycle_count = anal.seas_cycle_count(mons,dates_ln) if relative: if do==0: print 'Saving seasonal cycle over dom1, to calculate relative TTTs in dom2' scycle_count_d1 = scycle_count if do==1: print 'Calculating relative TTTs in dom2' scycle_count_d2 = scycle_count
mon2 = 3 nmon = len(mons) # First check the season print 'Subsetting by season?' print 'Selecting months for : ' + per_ttt_seas dates_se, cXs_se, cYs_se, degs_se, chs_se, keys_se, daynos_se, tworecdt_se = \ sset.sel_seas(mons, dates_dd, cXs_dd, cYs_dd, degs_dd, chs_dd, keys_dd, daynos_dd, tworecdt_dd) # Then subset by longitude print 'Subsetting by latitude?' print 'Selecting CBs between ' + str(wlon) + ' and ' + str( elon) dates_ln, cXs_ln, cYs_ln, degs_ln, chs_ln, keys_ln, daynos_ln, tworecdt_ln = \ sset.sel_cen_lon(wlon,elon,dates_se, cXs_se, cYs_se, degs_se, \ chs_se, keys_se, daynos_se, tworecdt_se) nttt = len(dates_ln) # Computing value for x axis print 'Getting value for x -axis' # tot_ttt=len(dates_ln) # if rel_picks[do]==True: # tot_ttt=float(tot_ttt)/len(dates_se)*100.0 # else: # if peryear: # tot_ttt=tot_ttt/nys #xvals[cnt,do]=tot_ttt # Edit to quickly plot something xvals[cnt, do] = len(dates_se)
if weightlats: latr = np.deg2rad(rlat) weights = np.cos(latr) zonmean = np.nanmean(seasmean, axis=1) reg_mean = np.ma.average(zonmean, weights=weights) else: reg_mean = np.nanmean(seasmean) # Get bias bias = reg_mean - reg_ref_mean yvals[cnt] = bias # Finally getting intensity dates_int, cXs_int, cYs_int, degs_int, chs_int, keys_int, daynos_int, tworecdt_int = \ sset.sel_cen_lon(int_ttt_wlon,int_ttt_elon,dates_per, cXs_per, cYs_per, \ degs_per, chs_per, keys_per, daynos_per, tworecdt_per) n4int = len(dates_int) print 'Selecting TTTs from rain data' indices = [] for dt in range(n4int): ix = my.ixdtimes(rdtime, [dates_int[dt][0]], \ [dates_int[dt][1]], [dates_int[dt][2]], [0]) if len(ix) >= 1: indices.append(ix) indices = np.squeeze(np.asarray(indices)) print 'Selecting rain on TTT days' rainsel = rain[indices, :, :]