Exemple #1
0
def coursera_LR(filename):
    f_LR = C1.load_tonumpy(filename)
    m, n = shape(f_LR)
    #get X and the lable Y,
    #attention please the features X, first column is all 1,so we need to make change to fit this
    X_feature = zeros([m, n])
    X_feature[:, 0] = 1
    X_feature[:, 1:-1] = f_LR[:, 0:-2]
    y_lable = f_LR[:, -1]
    #get LR model from sklearn.linear model
    LR = linear_model.LinearRegression()
    #training the LR model to get the weights of the LR
    LR.fit(X_feature, y_lable)
    weight_LR = LR.coef_  #coef_ is weight of the LR
    print("the training weights of the LR model is:")
    print weight_LR
    print LR.predict
    #ploting for better viewing
    #ploting together:scatter and plot_surface
    ax1 = plt.subplot(111, projection='3d')  #build 3d project
    ax1.scatter(X_feature[:, 1], X_feature[:, 2], y_lable)
    #second subplot,showing the surface of the regression
    #ax2=plt.subplot(111,projection='3d')  #build 3d project
    X = arange(500.0, 5000.0, 500.0)
    Y = arange(0.0, 9.0, 1.0)
    X, Y = meshgrid(X, Y)
    Z = X * weight_LR[1] + Y * weight_LR[2]
    ax1.plot_surface(X, Y, Z)
    #showing
    plt.show()
Exemple #2
0
def Logistic_sklearn_prepare(filename):
    f_not_scaling = C1.load_tonumpy(filename)
    #need scaling
    f_scaling = C2.Logistic_scaling(f_not_scaling)
    #the first column should be all 1
    f_scaling_universe = C2.Logistic_universe_form(f_scaling)
    return f_scaling_universe
Exemple #3
0
def view_before(filename):
    f = C1.load_tonumpy(filename)
    m, n = shape(f)
    feature_0, feature_1 = devide(f)
    #data have devided into two parts!
    #ploting!
    #y=0
    plt.scatter(feature_0[:, 0], feature_0[:, 1], s=m, c='r', marker='*')
    #y=1
    plt.scatter(feature_1[:, 0], feature_1[:, 1], s=m, c='b', marker='o')
    #showing()
    plt.show()
Exemple #4
0
def view_after_scaling(filename):
    f = C1.load_tonumpy(filename)
    m, n = shape(f)
    #scaling
    f_scaling = Logistic_scaling(f)
    #devide into two parts
    feature_0, feature_1 = devide(f_scaling)
    #ploting!
    #y=0
    plt.scatter(feature_0[:, 0], feature_0[:, 1], s=m, c='r', marker='*')
    #y=1
    plt.scatter(feature_1[:, 0], feature_1[:, 1], s=m, c='b', marker='o')
    #showing()
    plt.show()
def coursera_LR(filename):
    f_LR=C1.load_tonumpy(filename)
    m,n=shape(f_LR)
    #get X and the lable Y,
    #attention please the features X, first column is all 1,so we need to make change to fit this
    X_feature=zeros([m,n])
    X_feature[:,0]=1
    X_feature[:,1:-1]=f_LR[:,0:-2]
    y_lable=f_LR[:,-1]
    #get LR model from sklearn.linear model
    LR=linear_model.LinearRegression()
    #training the LR model to get the weights of the LR
    LR.fit(X_feature,y_lable)
    weight_LR=LR.coef_#coef_ is weight of the LR
    print("the training weights of the LR model is:" )
    print weight_LR
def Logistic_prepare(filename):
    #not scaling!
    f_not_scaling=C1.load_tonumpy(filename)
    #devide for ploting
    feature_not_scaling_0,feature_not_scaling_1=C2.devide(f_not_scaling)
    #the first column should be all 1
    m0,n0=shape(f_not_scaling)
    fprepare_not_scaling=zeros([m0,n0+1])
    fprepare_not_scaling[:,0]=1.0
    fprepare_not_scaling[:,1:]=f_not_scaling
    #scaling
    f_scaling=C2.Logistic_scaling(f_not_scaling)
    #devide for ploting
    feature_scaling_0,feature_scaling_1=C2.devide(f_scaling)
    m1,n1=shape(f_scaling)
    #the first column should be all 1
    fprepare_scaling=zeros([m1,n1+1])
    fprepare_scaling[:,0]=1.0
    fprepare_scaling[:,1:]=f_scaling
    return fprepare_not_scaling,feature_not_scaling_0,feature_not_scaling_1,fprepare_scaling,feature_scaling_0,feature_scaling_1
Exemple #7
0
def coursera_LR(filename):
    f_LR = C1.load_tonumpy(filename)
    m, n = shape(f_LR)
    #get X and the lable Y,
    #attention please the features X, first column is all 1,so we need to make change to fit this
    X_feature = zeros([m, n])
    X_feature[:, 0] = 1
    X_feature[:, 1] = f_LR[:, 0]
    y_lable = f_LR[:, 1]
    #get LR model from sklearn.linear model
    LR = linear_model.LinearRegression()
    #training the LR model to get the weights of the LR
    LR.fit(X_feature, y_lable)
    weight_LR = LR.coef_  #coef_ is weight of the LR
    print("the training weights of the LR model is:")
    print weight_LR
    #ploting for better viewing
    #scatter and plot is different
    plt.scatter(X_feature[:, 1], y_lable, color='black')
    plt.plot(X_feature[:, 1], LR.predict(X_feature), color='blue')
    plt.show()
Exemple #8
0
def Logistic_prepare(filename):
    #not scaling!
    f_not_scaling=C1.load_tonumpy(filename)
    #devide for ploting
    feature_not_scaling_0,feature_not_scaling_1=C2.devide(f_not_scaling)
    #feature_mapping
    f_mapping=C2.feature_mapping(f_not_scaling)
    #the first column should be all 1
    m,n=shape(f_mapping)
    fprepare_not_scaling=zeros([m,n+1])
    fprepare_not_scaling[:,0]=1.0
    fprepare_not_scaling[:,1:]=f_mapping
    ##scaling
    #f_scaling=C2.Logistic_scaling(f_not_scaling)
    ##devide for ploting
    #feature_scaling_0,feature_scaling_1=C2.devide(f_scaling)
    #m1,n1=shape(f_scaling)
    ##the first column should be all 1
    #fprepare_scaling=zeros([m1,n1+1])
    #fprepare_scaling[:,-1]=1.0
    #fprepare_scaling[:,0:-1]=f_scaling
    return fprepare_not_scaling,feature_not_scaling_0,feature_not_scaling_1