Exemple #1
0
    def apply(self, sim: cv.Sim):
        ''' Perform testing '''

        t = sim.t

        if self.n_tests[t]:

            # Compute weights for people who would test positive or negative
            positive_tests = np.zeros((sim.n, ))
            for i, person in enumerate(sim.people.values()):
                if person.infectious:
                    positive_tests[i] = 1
            negative_tests = 1 - positive_tests

            # Select the people to test in each category
            positive_inds = cv.choose_weighted(probs=positive_tests,
                                               n=min(sum(positive_tests),
                                                     self.n_positive[t]),
                                               normalize=True)
            negative_inds = cv.choose_weighted(
                probs=negative_tests,
                n=min(sum(negative_tests),
                      self.n_tests[t] - len(positive_inds)),
                normalize=True)

            # Todo - assess performance and optimize e.g. to reduce dict indexing
            for ind in positive_inds:
                person = sim.get_person(ind)
                person.test(
                    t, test_sensitivity=1.0
                )  # Sensitivity is 1 because the person is guaranteed to test positive
                sim.results['new_diagnoses'][t] += 1

            for ind in negative_inds:
                person = sim.get_person(ind)
                person.test(t, test_sensitivity=1.0)

            sim.results['new_tests'][t] += self.n_tests[t]

        return
Exemple #2
0
    def apply(self, sim: cv.Sim):

        t = sim.t

        # Check that there are still tests
        if t < len(self.daily_tests):
            n_tests = self.daily_tests[t]  # Number of tests for this day
            sim.results['new_tests'][t] += n_tests
        else:
            return

        # If there are no tests today, abort early
        if not (n_tests and pl.isfinite(n_tests)):
            return

        test_probs = np.ones(sim.n)

        for i, person in enumerate(sim.people.values()):
            # Adjust testing probability based on what's happened to the person
            # NB, these need to be separate if statements, because a person can be both diagnosed and infectious/symptomatic
            if person.symptomatic:
                test_probs[i] *= self.sympt_test  # They're symptomatic
            if person.known_contact:
                test_probs[
                    i] *= self.trace_test  # They've had contact with a known positive
            if person.diagnosed:
                test_probs[i] = 0.0

        test_inds = cv.choose_weighted(probs=test_probs,
                                       n=n_tests,
                                       normalize=True)

        for test_ind in test_inds:
            person = sim.get_person(test_ind)
            person.test(t, self.sensitivity)
            if person.diagnosed:
                sim.results['new_diagnoses'][t] += 1

        return