Exemple #1
0
 def test_scenario_with_model_change(self):
     # Instance to save population values
     population_data = PopulationData(filename=None)
     # Set tau value and start date of records
     example_data = ExampleData(tau=1440, start_date="01Jan2020")
     # Preset of SIR-F parameters
     preset_dict = SIRF.EXAMPLE["param_dict"]
     # Create dataset from 01Jan2020 to 31Jan2020
     area = {"country": "Theoretical"}
     example_data.add(SIRF, step_n=30, **area)
     # Register population value
     population_data.update(SIRF.EXAMPLE["population"], **area)
     # Create Scenario class
     snl = Scenario(example_data, population_data, tau=1440, **area)
     # Set 0th phase from 02Jan2020 to 31Jan2020 with preset parameter values
     snl.clear(include_past=True)
     snl.add(end_date="31Jan2020", model=SIRF, **preset_dict)
     # Add main scenario
     snl.add(end_date="31Dec2020", name="Main")
     # Add lockdown scenario
     rho_lock = snl.get("rho", phase="0th") / 2
     snl.add(end_date="31Dec2020", name="Lockdown", rho=rho_lock)
     # Add medicine scenario
     kappa_med = snl.get("kappa", phase="0th") / 2
     sigma_med = snl.get("sigma", phase="0th") * 2
     snl.add(end_date="31Dec2020",
             name="Medicine",
             kappa=kappa_med,
             sigma=sigma_med)
     # Add vaccine scenario
     snl.add(end_date="31Dec2020", name="Vaccine", model=SIRFV, omega=0.001)
     # Summarize
     snl.summary()
     # Compare scenarios
     snl.describe(y0_dict={"Vaccinated": 0})
Exemple #2
0
 def test_scenario(self):
     area = {"country": "Theoretical"}
     # Set-up example dataset (from 01Jan2020 to 31Jan2020)
     example_data = ExampleData(tau=1440, start_date="01Jan2020")
     example_data.add(SIRF, step_n=30, **area)
     # Population value
     population_data = PopulationData(filename=None)
     population_data.update(SIRF.EXAMPLE["population"], **area)
     # Set-up Scenario instance
     snl = Scenario(tau=1440, **area)
     snl.register(example_data, population_data)
     # Check records
     record_df = snl.records(variables="CFR")
     assert set(record_df.columns) == set(
         [Term.DATE, Term.C, Term.F, Term.R])
     # Add a past phase to 31Jan2020 with parameter values
     snl.add(model=SIRF, **SIRF.EXAMPLE["param_dict"])
     # Check summary
     df = snl.summary()
     assert not df.empty
     assert len(df) == 1
     assert Term.RT in df
     # Main scenario
     snl.add(end_date="31Dec2020", name="Main")
     assert snl.get(Term.RT, phase="last", name="Main") == 2.50
     # Lockdown scenario
     snl.clear(name="Lockdown")
     rho_lock = snl.get("rho", phase="0th") * 0.5
     snl.add(end_date="31Dec2020", name="Lockdown", rho=rho_lock)
     assert snl.get(Term.RT, phase="last", name="Lockdown") == 1.25
     # Medicine scenario
     snl.clear(name="Medicine")
     kappa_med = snl.get("kappa", phase="0th") * 0.5
     sigma_med = snl.get("sigma", phase="0th") * 2
     snl.add(end_date="31Dec2020",
             name="Medicine",
             kappa=kappa_med,
             sigma=sigma_med)
     assert snl.get(Term.RT, phase="last", name="Medicine") == 1.31
     # Add vaccine scenario
     snl.clear(name="Vaccine")
     rho_vac = snl.get("rho", phase="0th") * 0.8
     kappa_vac = snl.get("kappa", phase="0th") * 0.6
     sigma_vac = snl.get("sigma", phase="0th") * 1.2
     snl.add(end_date="31Dec2020",
             name="Vaccine",
             rho=rho_vac,
             kappa=kappa_vac,
             sigma=sigma_vac)
     assert snl.get(Term.RT, phase="last", name="Vaccine") == 1.72
     # Description
     snl.describe()
     # History
     snl.history("Rt")
     snl.history("rho")
     snl.history("Infected")
     snl.history_rate(name="Medicine")
     snl.simulate(name="Vaccine")
Exemple #3
0
 def test_ode_two_phases(self, population_data):
     # Setting
     eg_tau = 1440
     area = {"country": "Example", "province": "Example"}
     # Simulation
     example_data = ExampleData(tau=eg_tau)
     example_data.add(SIRF, step_n=30, **area)
     example_data.add(SIRD, step_n=30, **area)
     dim_df = example_data.subset(**area)
     assert isinstance(dim_df, pd.DataFrame)
     assert set(dim_df.columns) == set(Term.NLOC_COLUMNS)
Exemple #4
0
 def test_r0(self, model):
     eg_dict = model.EXAMPLE.copy()
     # Calculate r0
     model_ins = model(eg_dict["population"], **eg_dict["param_dict"])
     eg_r0 = model_ins.calc_r0()
     # Set-up example dataset (from 01Jan2020 to 31Jan2020)
     area = {"country": "Theoretical"}
     example_data = ExampleData(tau=1440, start_date="01Jan2020")
     example_data.add(model, step_n=180, **area)
     # Check the nature of r0
     df = example_data.specialized(model, **area)
     x_max = df.loc[df[Term.CI].idxmax(), Term.S] / eg_dict["population"]
     assert round(x_max, 2) == round(1 / eg_r0, 2)
Exemple #5
0
 def test_ode(self, model):
     # Setting
     eg_tau = 1440
     area = {"country": "Full", "province": model.NAME}
     # Population
     population_data = PopulationData(filename=None)
     population_data.update(model.EXAMPLE["population"], **area)
     # Simulation
     example_data = ExampleData(tau=eg_tau, start_date="01Jan2020")
     example_data.add(model, **area)
     # Model-specialized records
     spe_df = example_data.specialized(**area)
     assert set(spe_df.columns) == set(
         [*Term.STR_COLUMNS, *model.VARIABLES])
     # Non-dimensional records
     nondim_df = example_data.non_dim(**area)
     assert set(nondim_df.columns) == set(
         [Term.TS, *list(model.VAR_DICT.keys())])
     # JHU-type records
     jhu_df = example_data.subset(**area)
     assert set(jhu_df.columns) == set(Term.NLOC_COLUMNS)
     # Calculate Rt/day parameters when parameters are None
     param_dict = {p: 0 for p in model.PARAMETERS}
     model_instance = model(population_data.value(**area), **param_dict)
     model_instance.calc_r0()
     model_instance.calc_days_dict(eg_tau)
Exemple #6
0
 def test_ode(self, model):
     # Setting
     eg_tau = 1440
     # Simulation
     example_data = ExampleData(tau=eg_tau)
     example_data.add(model)
     nondim_df = example_data.non_dim(model)
     assert isinstance(nondim_df, pd.DataFrame)
     nondim_cols = [Term.TS, *list(model.VAR_DICT.keys())]
     assert set(nondim_df.columns) == set(nondim_cols)
     clean_df = example_data.cleaned()
     assert isinstance(clean_df, pd.DataFrame)
     assert set(clean_df.columns) == set(Term.COLUMNS)
     dim_df = example_data.subset(model)
     assert isinstance(dim_df, pd.DataFrame)
     assert set(dim_df.columns) == set(Term.NLOC_COLUMNS)
     # Estimation
     population = model.EXAMPLE["population"]
     estimator = Estimator(example_data,
                           model=model,
                           population=population,
                           country=model.NAME,
                           province=Term.UNKNOWN,
                           tau=eg_tau)
     estimator.run()
     estimated_df = estimator.summary(name=model.NAME)
     assert isinstance(estimated_df, pd.DataFrame)
     estimator.history(show_figure=False)
     estimator.accuracy(show_figure=False)
Exemple #7
0
 def test_error(self, model):
     # Setting
     eg_tau = 1440
     # Simulation
     example_data = ExampleData(tau=eg_tau, start_date="01Jan2020")
     with pytest.raises(KeyError):
         assert not example_data.specialized(model=model).empty
     with pytest.raises(KeyError):
         assert not example_data.non_dim(model=model).empty
     example_data.add(model)
     # Model-specialized records
     with pytest.raises(ValueError):
         assert not example_data.specialized().empty
Exemple #8
0
 def test_ode_two_phases(self, population_data):
     # Setting
     eg_tau = 1440
     # Simulation
     example_data = ExampleData(tau=eg_tau)
     example_data.add(SIRF, step_n=30)
     example_data.add(SIRD, step_n=30)
     nondim_df = example_data.non_dim(SIRF)
     assert isinstance(nondim_df, pd.DataFrame)
     nondim_cols = [Term.TS, *list(SIRF.VAR_DICT.keys())]
     assert set(nondim_df.columns) == set(nondim_cols)
     clean_df = example_data.cleaned()
     assert isinstance(clean_df, pd.DataFrame)
     assert set(clean_df.columns) == set(Term.COLUMNS)
     dim_df = example_data.subset(SIRF)
     assert isinstance(dim_df, pd.DataFrame)
     assert set(dim_df.columns) == set(Term.NLOC_COLUMNS)
     # Scenario analysis
     population = SIRF.EXAMPLE["population"]
     population_data.update(population, country=SIRF.NAME)
     scenario = Scenario(example_data, population_data, country=SIRF.NAME)
     scenario.trend()
Exemple #9
0
 def test_subset(self):
     example_data = ExampleData()
     example_data.add(SIRF, country="Japan")
     example_data.subset(country="Japan")
     example_data.subset_complement(country="Japan")
     example_data.records(country="Japan")
Exemple #10
0
 def test_iso3(self):
     example_data = ExampleData()
     example_data.add(SIRF, country="Japan")
     assert example_data.country_to_iso3("Japan") == "JPN"
     example_data.add(SIRF, country="Moon")
     assert example_data.country_to_iso3("Moon") == "---"
Exemple #11
0
 def test_two_phases(self, model):
     example_data = ExampleData()
     example_data.add(model)
     example_data.add(model)
     example_data.subset(model=model)
Exemple #12
0
 def test_one_phase(self, model):
     example_data = ExampleData()
     example_data.add(model)
     with pytest.raises(ValueError):
         example_data.subset()
     # Cleaned dataset
     clean_df = example_data.cleaned()
     assert set(
         clean_df.columns) == set(JHUData.CLEANED_COLS) - set([Term.ISO3])
     # Subset
     subset_df = example_data.subset(model=model)
     assert subset_df.columns.tolist() == Term.SUB_COLUMNS
     example_data.subset(country=model.NAME)
     example_data.subset_complement(model=model)
     example_data.records(model=model)
     # Specialized
     specialized_df = example_data.specialized(model=model)
     assert specialized_df.columns.tolist() == [Term.DATE, *model.VARIABLES]
     # Non-dimensional
     nondim_df = example_data.non_dim(model=model)
     assert nondim_df.columns.tolist() == model.VARIABLES
     assert round(nondim_df.sum().sum()) == len(nondim_df)