def test_calibrate(reg_dataset): x_train = reg_dataset[0] y_train = reg_dataset[1] x_cal = reg_dataset[2] y_cal = reg_dataset[3] adapt_model = Adapt_to_CP(RandomForestRegressor(n_estimators=10), True) adapt_model.fit(x_train, y_train) assert adapt_model.calibrate(x_cal, y_cal) == None
def test_calibrate_and_predict_upper(reg_dataset): x_train = reg_dataset[0] y_train = reg_dataset[1] x_cal = reg_dataset[2] y_cal = reg_dataset[3] x_test = reg_dataset[4] adapt_model = Adapt_to_CP(RandomForestRegressor(n_estimators=10), True) adapt_model.fit(x_train, y_train) pred = adapt_model.calibrate_and_predict(x_cal, y_cal, x_test, 0.8) assert type(pred[2]) == np.ndarray
def test_fit(reg_dataset): x_train = reg_dataset[0] y_train = reg_dataset[1] model = RandomForestRegressor(n_estimators=10) assert Adapt_to_CP(model, True).fit(x_train, y_train) == None
def test_Adapt_to_CP_icp(mod, sk_mod, icp): adapted_mod = Adapt_to_CP(mod, sk_mod) assert type(adapted_mod.icp) == icp
def test_Adapt_to_CP_model(model, sk_model, adapt_model): adapted_mod = Adapt_to_CP(model, sk_model) assert type(adapted_mod.model) == adapt_model