Exemple #1
0
def batch_grid_subsampling_kpconv(points,
                                  batches_len,
                                  features=None,
                                  labels=None,
                                  sampleDl=0.1,
                                  max_p=0,
                                  verbose=0,
                                  random_grid_orient=True):
    """
    CPP wrapper for a grid subsampling (method = barycenter for points and features)
    """
    if (features is None) and (labels is None):
        s_points, s_len = cpp_subsampling.subsample_batch(points,
                                                          batches_len,
                                                          sampleDl=sampleDl,
                                                          max_p=max_p,
                                                          verbose=verbose)
        return torch.from_numpy(s_points), torch.from_numpy(s_len)

    elif (labels is None):
        s_points, s_len, s_features = cpp_subsampling.subsample_batch(
            points,
            batches_len,
            features=features,
            sampleDl=sampleDl,
            max_p=max_p,
            verbose=verbose)
        return torch.from_numpy(s_points), torch.from_numpy(
            s_len), torch.from_numpy(s_features)

    elif (features is None):
        s_points, s_len, s_labels = cpp_subsampling.subsample_batch(
            points,
            batches_len,
            classes=labels,
            sampleDl=sampleDl,
            max_p=max_p,
            verbose=verbose)
        return torch.from_numpy(s_points), torch.from_numpy(
            s_len), torch.from_numpy(s_labels)

    else:
        s_points, s_len, s_features, s_labels = cpp_subsampling.subsample_batch(
            points,
            batches_len,
            features=features,
            classes=labels,
            sampleDl=sampleDl,
            max_p=max_p,
            verbose=verbose)
        return torch.from_numpy(s_points), torch.from_numpy(
            s_len), torch.from_numpy(s_features), torch.from_numpy(s_labels)
Exemple #2
0
def batch_grid_subsampling(points, batches_len, features=None, labels=None, ins_labels=None,
                           sampleDl=0.1, max_p=0, verbose=0, random_grid_orient=True):
    """
    CPP wrapper for a grid subsampling (method = barycenter for points and features)
    :param points: (N, 3) matrix of input points
    :param features: optional (N, d) matrix of features (floating number)
    :param labels: optional (N,) matrix of integer labels
    :param ins_labels: optional (N,) matrix of integer instance labels
    :param sampleDl: parameter defining the size of grid voxels
    :param verbose: 1 to display
    :return: subsampled points, with features and/or labels depending of the input
    """

    R = None
    B = len(batches_len)
    if random_grid_orient:

        ########################################################
        # Create a random rotation matrix for each batch element
        ########################################################

        # Choose two random angles for the first vector in polar coordinates
        theta = np.random.rand(B) * 2 * np.pi
        phi = (np.random.rand(B) - 0.5) * np.pi

        # Create the first vector in carthesian coordinates
        u = np.vstack([np.cos(theta) * np.cos(phi), np.sin(theta) * np.cos(phi), np.sin(phi)])

        # Choose a random rotation angle
        alpha = np.random.rand(B) * 2 * np.pi

        # Create the rotation matrix with this vector and angle
        R = create_3D_rotations(u.T, alpha).astype(np.float32)

        #################
        # Apply rotations
        #################

        i0 = 0
        points = points.copy()
        for bi, length in enumerate(batches_len):
            # Apply the rotation
            points[i0:i0 + length, :] = np.sum(np.expand_dims(points[i0:i0 + length, :], 2) * R[bi], axis=1)
            i0 += length

    #######################
    # Sunsample and realign
    #######################

    if (features is None) and (labels is None):
        s_points, s_len = cpp_subsampling.subsample_batch(points,
                                                          batches_len,
                                                          sampleDl=sampleDl,
                                                          max_p=max_p,
                                                          verbose=verbose)
        if random_grid_orient:
            i0 = 0
            for bi, length in enumerate(s_len):
                s_points[i0:i0 + length, :] = np.sum(np.expand_dims(s_points[i0:i0 + length, :], 2) * R[bi].T, axis=1)
                i0 += length
        return s_points, s_len

    elif (labels is None):
        s_points, s_len, s_features = cpp_subsampling.subsample_batch(points,
                                                                      batches_len,
                                                                      features=features,
                                                                      sampleDl=sampleDl,
                                                                      max_p=max_p,
                                                                      verbose=verbose)
        if random_grid_orient:
            i0 = 0
            for bi, length in enumerate(s_len):
                # Apply the rotation
                s_points[i0:i0 + length, :] = np.sum(np.expand_dims(s_points[i0:i0 + length, :], 2) * R[bi].T, axis=1)
                i0 += length
        return s_points, s_len, s_features

    elif (features is None):
        s_points, s_len, s_labels, s_ins_labels = cpp_subsampling.subsample_batch(points,
                                                                    batches_len,
                                                                    classes=labels,
                                                                    ins_classes=ins_labels,
                                                                    sampleDl=sampleDl,
                                                                    max_p=max_p,
                                                                    verbose=verbose)
        if random_grid_orient:
            i0 = 0
            for bi, length in enumerate(s_len):
                # Apply the rotation
                s_points[i0:i0 + length, :] = np.sum(np.expand_dims(s_points[i0:i0 + length, :], 2) * R[bi].T, axis=1)
                i0 += length
        return s_points, s_len, s_labels, s_ins_labels

    else:
        s_points, s_len, s_features, s_labels, s_ins_labels = cpp_subsampling.subsample_batch(points,
                                                                              batches_len,
                                                                              features=features,
                                                                              classes=labels,
                                                                              ins_classes=ins_labels,
                                                                              sampleDl=sampleDl,
                                                                              max_p=max_p,
                                                                              verbose=verbose)
        if random_grid_orient:
            i0 = 0
            for bi, length in enumerate(s_len):
                # Apply the rotation
                s_points[i0:i0 + length, :] = np.sum(np.expand_dims(s_points[i0:i0 + length, :], 2) * R[bi].T, axis=1)
                i0 += length
        return s_points, s_len, s_features, s_labels, s_ins_labels