def __init__(self, paths: list, width: int, height: int, z_size: int): self.paths = paths self.width = width self.height = height self.z_size = z_size self.input_data = InputData(self.width, self.height, self.z_size) super(MyDataset, self).__init__()
def test_input_data(): data = InputData(width=12, height=14, z_size=2) x, z = data.as_batch() # check shape assert x.shape == (12 * 14, 3) assert z.shape == (12 * 14, 2)
def gen_images(): parser = argparse.ArgumentParser(description="multiple images as single image") parser.add_argument('--out', type=Path, default=Path('./tmp/out.png')) parser.add_argument('--n_rows', type=int, default=5) parser.add_argument('--n_cols', type=int, default=5) parser.add_argument('--model_config_path', type=Path, default=Path('./conf/model.yaml')) parser.add_argument('--gpu', type=int, default=-1) parser.add_argument('--load', type=Path) parser.add_argument('--size', type=int) args = parser.parse_args() batch_size = args.n_rows * args.n_cols # init model model_config = ModelConfig.load(args.model_config_path) model = CPPN(model_config) # override size of output if args.size: model_config.width = args.size model_config.height = args.size if args.load: assert args.load.exists() print(f"load model from {args.load}") chainer.serializers.load_npz(args.load, model) # model to gpu if args.gpu >= 0: chainer.cuda.get_device_from_id(args.gpu).use() model.to_gpu() # init x and z input_data = InputData(width=model_config.width, height=model_config.height, z_size=model_config.z_size) x, z = [], [] for _ in range(batch_size): _x, _z = input_data.as_batch() x.append(_x) z.append(_z) x = numpy.concatenate(x) z = numpy.concatenate(z) # to device xp = model.xp x = chainer.Variable(xp.asarray(x)) z = chainer.Variable(xp.asarray(z)) y = model.forward(x, z) y = chainer.cuda.to_cpu(y.data) # chainer variable [B, 1, W, H], float [0, 1] -> numpy array uint8 [0, 255] y = post_process_output(y) y = y.reshape((args.n_rows, args.n_cols, 1, input_data.height, input_data.width)) y = y.transpose((0, 3, 1, 4, 2)) y = y.reshape((args.n_rows * input_data.height, args.n_cols * input_data.width)) Image.fromarray(y).save(args.out)
def __init__(self, width: int, height: int, z_size: int): self.width = width self.height = height self.z_size = z_size self.input_data = InputData(self.width, self.height, self.z_size) # use only train dataset self.train_data, _ = chainer.datasets.get_mnist() super(MnistDataset, self).__init__()
def __init__(self, width: int, height: int, z_size: int, data_path: Path): self.width = width self.height = height self.z_size = z_size self.input_data = InputData(self.width, self.height, self.z_size) # load image data with gzip.open(data_path, 'rb') as f: self.data = numpy.frombuffer(f.read(), numpy.uint8, offset=16).reshape(-1, 28 * 28) super(EMnistDataset, self).__init__()
def test_conditional_forward(): width = 5 height = 7 z_size = 2 batch_size = 3 batch_size = 3 model = ConditionalCPPN( ConditionalModelConfig(width=width, height=height, n_units_xyr=3, n_hidden_units=[ 10, 10, ], z_size=z_size, in_width=64, in_height=64, in_channel=1)) x, z = [], [] for _ in range(batch_size): _x, _z = InputData(width=width, height=height, z_size=z_size).as_batch() x.append(_x) z.append(_z) x = numpy.concatenate(x, axis=0) z = numpy.concatenate(z, axis=0) c = get_dammy_input(batch_size, 64, 64, 1) # init dammy conditional input y = model.forward(x, z, c) assert y.shape == (batch_size, 1, width, height)
class MnistDataset(chainer.dataset.DatasetMixin): def __init__(self, width: int, height: int, z_size: int): self.width = width self.height = height self.z_size = z_size self.input_data = InputData(self.width, self.height, self.z_size) # use only train dataset self.train_data, _ = chainer.datasets.get_mnist() super(MnistDataset, self).__init__() def __len__(self): return len(self.train_data) def get_example(self, i: int): """ Return batch of image [1, 1, S, S], where S = `size` """ x, z = self.input_data.as_batch() c, _ = self.train_data[i] c = c * -1 + 1.0 # flip [0, 1] -> [1, 0] c = c.reshape((28, 28)) * 255.0 image = Image.fromarray(c.astype(numpy.uint8)).resize((self.width, self.height)) c = numpy.asarray(image).astype(numpy.float32) / 255.0 # 2D array c = c.reshape((1, 1, self.width, self.height)) return x, z, c
class EMnistDataset(chainer.dataset.DatasetMixin): def __init__(self, width: int, height: int, z_size: int, data_path: Path): self.width = width self.height = height self.z_size = z_size self.input_data = InputData(self.width, self.height, self.z_size) # load image data with gzip.open(data_path, 'rb') as f: self.data = numpy.frombuffer(f.read(), numpy.uint8, offset=16).reshape(-1, 28 * 28) super(EMnistDataset, self).__init__() def __len__(self): return len(self.data) def get_example(self, i: int): """ Return batch of image [1, 1, S, S], where S = `size` """ x, z = self.input_data.as_batch() c = self.data[i] # [0, 255] c = c * -1 + 255 # flip c = c.reshape((28, 28)).T image = Image.fromarray(c).resize((self.width, self.height)) c = numpy.asarray(image).astype(numpy.float32) / 255.0 # 2D array c = c.reshape((1, 1, self.width, self.height)) return x, z, c
class MyDataset(chainer.dataset.DatasetMixin): def __init__(self, paths: list, width: int, height: int, z_size: int): self.paths = paths self.width = width self.height = height self.z_size = z_size self.input_data = InputData(self.width, self.height, self.z_size) super(MyDataset, self).__init__() def __len__(self): return len(self.paths) def get_example(self, i): """ returns x, z, c """ # get x, z = self.input_data.as_batch() # open image and convert to [1, 1, W, H] c = Image.open(Path(self.paths[i])) c = c.resize((self.width, self.height)) c = c.convert('L') c = numpy.asarray(c, dtype=numpy.float32) / 255. # [0, 255] -> [0, 1] c = c.reshape((1, 1, self.width, self.height)) # [1, 1, W, H] return x, z, c
def gen_input_batch(batch_size, width, height, z_size): # create inputs inputs = {} x, z = [], [] for idx in range(batch_size): _x, _z = InputData(width=width, height=height, z_size=z_size).as_batch() _x = chainer.Variable(_x) _z = chainer.Variable(_z) x.append(_x) z.append(_z) inputs[idx] = (_x, _z) x = F.concat(x, axis=0) z = F.concat(z, axis=0) return x, z, inputs
def test_unconditional_forward(): width = 5 height = 7 z_size = 2 batch_size = 3 model = CPPN(ModelConfig(width=width, height=height, n_units_xyrz=3, n_hidden_units=[5, 5], z_size=z_size)) x, z = [], [] for _ in range(batch_size): _x, _z = InputData(width=width, height=height, z_size=z_size).as_batch() x.append(_x) z.append(_z) x = numpy.concatenate(x, axis=0) z = numpy.concatenate(z, axis=0) y = model.forward(x, z) assert y.shape == (batch_size, 1, width, height)
def interp_movie(): parser = argparse.ArgumentParser(description="Gen gif movie") parser.add_argument('--out', type=Path, default=Path('./tmp/out.gif')) parser.add_argument('--frames', type=int, default=10) parser.add_argument('--z_points', type=int, default=10) parser.add_argument('--batch_size', type=int, default=50) parser.add_argument('--model_config_path', type=Path, default=Path('./conf/model.yaml')) parser.add_argument('--gpu', type=int, default=-1) parser.add_argument('--load', type=Path) parser.add_argument('--size', type=int) args = parser.parse_args() # create directory to put result args.out.parent.mkdir(exist_ok=True) # init model model_config = ModelConfig.load(args.model_config_path) # override size of output if args.size: model_config.width = args.size model_config.height = args.size model = CPPN(model_config) if args.load: assert args.load.exists() print(f"load model from {args.load}") chainer.serializers.load_npz(args.load, model) # model to gpu if args.gpu >= 0: chainer.cuda.get_device_from_id(args.gpu).use() model.to_gpu() # init x and z input_data = InputData(width=model_config.width, height=model_config.height, z_size=model_config.z_size) # gen frames images = [] zs = [] for _ in range(args.z_points): zs.extend( interp_z(sample_z(model_config.z_size), sample_z(model_config.z_size), args.frames)) for i in range(0, len(zs), args.batch_size): begin_idx = i end_idx = min(i + args.batch_size, len(zs) - 1) print(f"{begin_idx} -> {end_idx}") # make input batch x = [] z = [] for _z in zs[begin_idx:end_idx]: _x, _z = input_data.as_batch(z=_z) x.append(_x) z.append(_z) if len(x) == 0: break x = numpy.concatenate(x) z = numpy.concatenate(z) # to device xp = model.xp x = chainer.Variable(xp.asarray(x)) z = chainer.Variable(xp.asarray(z)) y = model.forward(x, z) y = chainer.cuda.to_cpu(y.data) # chainer variable [B, 1, W, H], float [0, 1] -> numpy array uint8 [0, 255] y = post_process_output(y) for _y in y: images.append(Image.fromarray(_y[0])) # save as gif images[0].save(str(args.out), save_all=True, append_images=images)