Exemple #1
0
def test_statistics_two_components():
    '''
    Assert that online lda extracts waited statistics on current document.
    '''
    n_components = 2

    np.random.seed(42)

    lda = LDA(n_components, number_of_documents=60)

    statistics_list = []

    for doc in DOC_SET:

        word_list = lda.tokenizer(lda.preprocess(lda._get_text(doc)))

        lda._update_indexes(word_list=word_list)

        word_indexes = [lda.word_to_index[word] for word in word_list]

        statistics, _ = lda._compute_statistics_components(
            words_indexes_list=word_indexes, )

        statistics_list.append(statistics)

        lda._update_weights(statistics=statistics)

    for index, statistics in enumerate(statistics_list):
        for component in range(n_components):
            assert np.array_equal(
                a1=statistics[component],
                a2=REFERENCE_STATISTICS_TWO_COMPONENTS[index][component],
            )
Exemple #2
0
def test_five_components():
    '''
    Assert that components computed are identical to the original version for n dimensions.
    '''
    np.random.seed(42)

    n_components = 5

    online_lda = LDA(
        n_components=n_components,
        number_of_documents=60,
        maximum_size_vocabulary=100,
        alpha_beta=100,
        alpha_theta=0.5,
    )

    components_list = []

    for document in DOC_SET:
        components_list.append(online_lda.fit_transform_one(document))

    for index, component in enumerate(components_list):
        assert np.array_equal(
            a1=list(component.values()),
            a2=REFERENCE_FIVE_COMPONENTS[index],
        )
Exemple #3
0
def test_five_components():
    """
    Assert that components computed are identical to the original version for n dimensions.
    """

    n_components = 5

    lda = LDA(n_components=n_components,
              number_of_documents=60,
              maximum_size_vocabulary=100,
              alpha_beta=100,
              alpha_theta=0.5,
              seed=42)

    components_list = []

    for document in DOC_SET:
        tokens = {token: 1 for token in document.split(' ')}
        components_list.append(lda.fit_transform_one(tokens))

    for index, component in enumerate(components_list):
        assert np.array_equal(
            a1=list(component.values()),
            a2=REFERENCE_FIVE_COMPONENTS[index],
        )
Exemple #4
0
def test_extraction_words_ids():
    """
    Assert that inputs words are splitted.
    Assert that indexes are updated and extractable.
    """

    lda = LDA(2, number_of_documents=5, seed=42)

    word_indexes_list = []

    for doc in DOC_SET:

        words = doc.split(' ')

        lda._update_indexes(word_list=words)

        word_indexes_list.append([lda.word_to_index[word] for word in words])

    assert word_indexes_list == [
        [1, 2],
        [1, 3, 4],
        [1, 2, 5],
        [1, 3],
        [1, 2, 6],
    ]
Exemple #5
0
def test_extraction_words_ids():
    '''
    Assert that inputs words are splitted.
    Assert that indexes are updated and extractable.
    '''
    np.random.seed(42)

    lda = LDA(2, number_of_documents=5)

    word_indexes_list = []

    for doc in DOC_SET:

        words = lda.process_text(doc)

        lda._update_indexes(word_list=words)

        word_indexes_list.append([lda.word_to_index[word] for word in words])

    assert word_indexes_list == [
        [1, 2],
        [1, 3, 4],
        [1, 2, 5],
        [1, 3],
        [1, 2, 6],
    ]
Exemple #6
0
def test_statistics_two_components():
    """
    Assert that online lda extracts waited statistics on current document.
    """
    n_components = 2

    lda = LDA(n_components, number_of_documents=60, seed=42)

    statistics_list = []

    for doc in DOC_SET:

        word_list = doc.split(' ')

        lda._update_indexes(word_list=word_list)

        word_indexes = [lda.word_to_index[word] for word in word_list]

        statistics, _ = lda._compute_statistics_components(
            words_indexes_list=word_indexes, )

        statistics_list.append(statistics)

        lda._update_weights(statistics=statistics)

    for index, statistics in enumerate(statistics_list):
        for component in range(n_components):
            assert np.array_equal(
                a1=statistics[component],
                a2=REFERENCE_STATISTICS_TWO_COMPONENTS[index][component],
            )
Exemple #7
0
def test_prunning_vocabulary():
    '''
    Vocabulary prunning is available to improve accuracy and limit memory usage.
    You can perform vocabulary prunning with parameters vocab_prune_interval (int) and
    maximum_size_vocabulary (int).
    '''
    np.random.seed(42)

    online_lda = LDA(n_components=2,
                     number_of_documents=60,
                     vocab_prune_interval=2,
                     maximum_size_vocabulary=3)

    components_list = []

    for document in DOC_SET:
        components_list.append(online_lda.fit_transform_one(x=document))

    for index, component in enumerate(components_list):
        assert np.array_equal(a1=list(component.values()),
                              a2=REFERENCE_COMPONENTS_WITH_PRUNNING[index])
Exemple #8
0
def test_fit_transform():
    """
    Assert that fit_one and transform_one methods returns waited ouput.
    """

    lda = LDA(n_components=2,
              number_of_documents=60,
              vocab_prune_interval=2,
              maximum_size_vocabulary=3,
              seed=42)
    components_list = []

    for document in DOC_SET:
        tokens = {token: 1 for token in document.split(' ')}
        lda = lda.fit_one(x=tokens)

        components_list.append(lda.transform_one(x=tokens))

    for index, component in enumerate(components_list):
        assert np.array_equal(a1=list(component.values()),
                              a2=REFERENCE_FIT_ONE_PREDICT_ONE[index])
Exemple #9
0
def test_fit_transform():
    '''
    Assert that fit_one and transform_one methods returns waited ouput.
    '''
    np.random.seed(42)

    online_lda = LDA(
        n_components=2,
        number_of_documents=60,
        vocab_prune_interval=2,
        maximum_size_vocabulary=3,
    )
    components_list = []

    for document in DOC_SET:
        online_lda = online_lda.fit_one(x=document)

        components_list.append(online_lda.transform_one(x=document))

    for index, component in enumerate(components_list):
        assert np.array_equal(a1=list(component.values()),
                              a2=REFERENCE_FIT_ONE_PREDICT_ONE[index])
Exemple #10
0
def test_prunning_vocabulary():
    """
    Vocabulary prunning is available to improve accuracy and limit memory usage.
    You can perform vocabulary prunning with parameters vocab_prune_interval (int) and
    maximum_size_vocabulary (int).
    """

    lda = LDA(n_components=2,
              number_of_documents=60,
              vocab_prune_interval=2,
              maximum_size_vocabulary=3,
              seed=42)

    components_list = []

    for document in DOC_SET:
        tokens = {token: 1 for token in document.split(' ')}
        components_list.append(lda.fit_transform_one(tokens))

    for index, component in enumerate(components_list):
        assert np.array_equal(a1=list(component.values()),
                              a2=REFERENCE_COMPONENTS_WITH_PRUNNING[index])
Exemple #11
0
def test_statistics_five_components():
    '''
    Assert that online lda extracts waited statistics on current document.
    '''
    np.random.seed(42)

    n_components = 5

    lda = LDA(
        n_components=n_components,
        number_of_documents=60,
        maximum_size_vocabulary=100,
        alpha_beta=100,
        alpha_theta=0.5,
    )

    statistics_list = []

    for doc in DOC_SET:

        word_list = lda.process_text(doc)

        lda._update_indexes(word_list=word_list)

        word_indexes = [lda.word_to_index[word] for word in word_list]

        statistics, _ = lda._compute_statistics_components(
            words_indexes_list=word_indexes, )

        statistics_list.append(statistics)

        lda._update_weights(statistics=statistics)

    for index, statistics in enumerate(statistics_list):
        for component in range(n_components):
            assert np.array_equal(
                a1=statistics[component],
                a2=REFERENCE_STATISTICS_FIVE_COMPONENTS[index][component],
            )