Exemple #1
0
def test_check_grad():
    DIMX = 5
    DIMY = 3
    #def check_grad():
    n_words = 5
    n_chars = 2
    np.random.seed(3)
    word_list = np.random.randint(10, size=DIMX * n_chars * n_words).reshape(
        n_words, n_chars, DIMX)
    label_list = np.random.choice(range(1, DIMY + 1),
                                  size=n_chars * n_words).reshape(
                                      n_words, n_chars)
    #    x = np.zeros((DIMX*DIMY)+DIMY*DIMY)
    x = np.random.uniform(size=(DIMX * DIMY) + (DIMY * DIMY))
    model = CRFModel(DIMX, DIMY)
    model.load_X(x)
    W1, T1 = model._W, model._T
    print("word = ", word_list.shape)
    print("W = ", W1.shape)
    print("T = ", T1.shape)
    print("label = ", label_list.shape)
    print("CRF = ", log_crf_wrapper(x, word_list, label_list, DIMX, DIMY))
    g = grad_crf_wrapper(x, word_list, label_list, DIMX, DIMY)
    print("g = {}".format(g))
    score = opt.check_grad(log_crf_wrapper, grad_crf_wrapper, x,
                           *[word_list, label_list, DIMX, DIMY])
    print("Score = ", score)
    assert score < 1.0e-4
Exemple #2
0
def test_check_grad():
    DIMX = 12
    DIMY = 5
    #def check_grad():
    n_words = 10
    n_chars = 3
    np.random.seed(3)
    word_list = np.random.randint(10, size=DIMX * n_chars * n_words).reshape(
        n_words, n_chars, DIMX).tolist()
    label_list = np.random.choice(range(1, DIMY + 1),
                                  size=n_chars * n_words).reshape(
                                      n_words, n_chars).tolist()
    x = np.zeros((DIMX * DIMY) + DIMY * DIMY)
    #    x= np.random.uniform(size=(DIMX*DIMY)+(DIMY*DIMY))
    model = CRFModel(DIMX, DIMY)
    model.load_X(x)
    W1, T1 = model._W, model._T
    print("W = ", W1.shape)
    print("T = ", T1.shape)
    train = np.zeros((n_words, 2), dtype='object')
    for i in range(n_words):
        tempX = []
        for word in word_list[i]:
            tempX.append(np.array(word, dtype=float))
        train[i][0] = np.array(tempX)
        train[i][1] = np.array(label_list[i], dtype=int)

    score = opt.check_grad(log_crf_wrapper, grad_crf_wrapper, x,
                           *[train, DIMX, DIMY, False])
    print("Score = ", score)
    assert score < 1.0e-3
    score = opt.check_grad(test_log_crf, test_grad_crf, x,
                           *[train, 1000, DIMX, DIMY, False])
    print("Score = ", score)
    assert score < 1.0e-3
Exemple #3
0
def log_crf_wrapper(x, train, dimX, dimY, from_file=False):
    model = CRFModel(dimX, dimY)
    model.load_X(x, from_file=from_file)
    crfs = np.apply_along_axis(get_logCRF, 1, train,*[model])
#    print(x)
#    print(crfs.mean())
    return np.mean(crfs)
Exemple #4
0
def grad_crf_wrapper(x, train, dimX, dimY, from_file=False):
#    print(x)
    model = CRFModel(dimX, dimY)
    model.load_X(x, from_file=from_file)
    g = np.apply_along_axis(calculate_gradient_crf, 1, train, *[model])
#    print(g.mean(axis=0))
    return g.mean(axis=0)
Exemple #5
0
def test_grad_crf(x, train, c, dimX, dimY, from_file=True):
    model = CRFModel(dimX, dimY)
    model.load_X(x, from_file=from_file)
    W = model._W  # column format
    T = model._T  # column format
    reg = np.concatenate([W.T.reshape(-1), T.T.reshape(-1)])
    g = grad_crf_wrapper(x, train, dimX, dimY, from_file=from_file)
    g = -c * g + reg
    return g
Exemple #6
0
def test_log_crf(x, train, c, dimX, dimY, from_file=True):
    logCrf = log_crf_wrapper(x, train, dimX, dimY, from_file=from_file)
    model = CRFModel(dimX, dimY)
    #    print(x)
    model.load_X(x, from_file=from_file)
    W = model._W  # column format
    T = model._T  # column format
    # Compute the objective value of CRF
    f = (-c * logCrf) + 0.5 * np.sum(W * W) + 0.5 * np.sum(
        T * T)  # objective log-likelihood + regularizer
    #    print(f)
    return f
Exemple #7
0
def grad_crf_wrapper(x, word_list, label_list, dimX, dimY, from_file=False):
    #    print(x)
    model = CRFModel(dimX, dimY)
    model.load_X(x, from_file=from_file)
    #    T[:,:] = 0.0
    avg = np.zeros(x.shape)
    for i, word in enumerate(word_list):
        label = label_list[i]
        avg += calculate_gradient_crf(word, label, model)
    g = avg / len(word_list)
    #    g[-DIMY*DIMY:] = 0
    return g
Exemple #8
0
def generate_result():
    train_data = read_train("../data/train.txt")
    train = np.array(train_data)
    word_list = train[:, 0]
    label_list = train[:, 1]
    print("word_list shape :", word_list.shape)
    print("label_list shape :", label_list.shape)
    print("word shape:", word_list[3].shape)

    model = CRFModel(dimX=128, dimY=26)
    model.load_X("../data/model.txt", from_file=True)
    print(model._T.shape)
    print(model._W.shape)
    meanLogCRF = get_logCRF_all(model, word_list, label_list)
    print(meanLogCRF)  #-29.954718407620692

    x = np.loadtxt("../data/model.txt")
    g = grad_crf_wrapper(x, word_list, label_list, 128, 26, from_file=True)
    return g
Exemple #9
0
def crf_test(x, test_data):
    """
    Compute the test accuracy on the list of words (word_list); x is the
    current model (w_y and T, stored as a vector)
    """
    word_list = test_data[:, 0]
    true_label = test_data[:, 1]
    # x is a vector. so reshape it into w_y and T
    model = CRFModel(128, 26)
    model.load_X(x,
                 from_file=False)  # Assume x in the format received from file
    # Compute the CRF prediction of test data using W and T
    y_predict = crf_decode(model, word_list)
    #    print(y_predict)

    # Compute the test accuracy by comparing the prediction with the ground truth
    letterAcc, wordAcc = compare(y_predict, true_label)
    print('Letter Accuracy = {}\n'.format(letterAcc))
    print('Word Accuracy = {} \n'.format(wordAcc))
    return y_predict
Exemple #10
0
def crf_obj(x, train_data, c):
    """Compute the CRF objective and gradient on the list of words (word_list)
    evaluated at the current model x (w_y and T, stored as a vector)
    """
    print("Evaluating grad")
    global iteration
    iteration += 1
    print(iteration)
    # x is a vector as required by the solver.
    logCrf = log_crf_wrapper(x, train_data, 128, 26, from_file=False)
    model = CRFModel(128, 26)
    model.load_X(x, from_file=False)
    W = model._W  # column format
    T = model._T  # column format
    # Compute the objective value of CRF
    f = (-c * logCrf) + (0.5 * np.sum(W * W)) + (
        0.5 * np.sum(T * T))  # objective log-likelihood + regularizer
    reg = np.concatenate([W.T.reshape(-1), T.T.reshape(-1)])
    g = grad_crf_wrapper(x, train_data, 128, 26, from_file=False)
    g = -c * g + reg
    return [f, g]
Exemple #11
0
def log_crf_wrapper(x, word_list, label_list, dimX, dimY, from_file=False):
    model = CRFModel(dimX, dimY)
    model.load_X(x, from_file=from_file)
    return get_logCRF_all(model, word_list, label_list)