Exemple #1
0
def main():
    input_file = "image.jpg"
    output_file = "labels.png"

    # Download the model from https://goo.gl/ciEYZi
    saved_model_path = "/data/download/crfrnn_keras_model.h5"

    model = get_crfrnn_model_def()
    model.load_weights(saved_model_path)

    img_data, img_h, img_w = util.get_preprocessed_image(input_file)
    probs = model.predict(img_data, verbose=False)[0, :, :, :]
    segmentation = util.get_label_image(probs, img_h, img_w)
    segmentation.save(output_file)
Exemple #2
0
def main():
    input_file = 'image.jpg'
    output_file = 'labels.png'

    # Download the model from https://goo.gl/ciEYZi
    saved_model_path = 'crfrnn_keras_model.h5'

    model = get_crfrnn_model_def()
    model.load_weights(saved_model_path)

    img_data, img_h, img_w = util.get_preprocessed_image(input_file)
    probs = model.predict(img_data, verbose=False)[0, :, :, :]
    segmentation = util.get_label_image(probs, img_h, img_w)
    segmentation.save(output_file)
Exemple #3
0
def main():
    input_file = 'image.jpg'
    output_file = 'labels.png'

    # Download the model from https://goo.gl/ciEYZi
    saved_model_path = 'crfrnn_keras_model.h5'

    model = get_crfrnn_model_def()
    #model.load_weights(saved_model_path)

    img_data, img_h, img_w = util.get_preprocessed_image(input_file)
    tic = time.clock()
    probs = model.predict(img_data, verbose=False)[0, :, :, :]
    toc = time.clock()
    segmentation = util.get_label_image(probs, img_h, img_w)
    segmentation.save(output_file)
    print("Time taken: " + str(toc - tic))
def main():
    input_file = 'image.jpg'
    output_file = 'labels.png'
    segment_file = 'segment.jpg'

    # Download the model from https://goo.gl/ciEYZi
    saved_model_path = 'crfrnn_keras_model.h5'

    model = get_crfrnn_model_def(num_segs=1)
    model.load_weights(saved_model_path)

    img_data, img_h, img_w = util.get_preprocessed_image(input_file)
    seg_data, seg_h, seg_w = util.get_preprocessed_image(segment_file)

    #     img_data = img_data.reshape([1, 500, 500, 3])
    #     seg_data = seg_data.reshape([1, 500, 500, 3])
    probs = model.predict([img_data, seg_data], verbose=False)[0, :, :, :]
    segmentation = util.get_label_image(probs, img_h, img_w)
    segmentation.save(output_file)
Exemple #5
0
def main():
    input_file = 'hiking.jpg'
    mask_file = 'labels.png'

    # Download the model from https://goo.gl/ciEYZi
    saved_model_path = 'crfrnn_keras_model.h5'

    model = get_crfrnn_model_def()
    model.load_weights(saved_model_path)

    img_data, img_h, img_w, size = util.get_preprocessed_image(input_file)
    probs = model.predict(img_data, verbose=False)[0]
    segmentation = util.get_label_image(probs, img_h, img_w, size)
    segmentation.save(mask_file)

    input_content = cv2.imread(input_file)
    mask_content = cv2.imread(mask_file)

    input_content[mask_content == 0] = 255
    print(input_content.shape)
    cv2.imwrite('output.jpg', input_content)
Exemple #6
0
def main():
    input_file = inp_f
    tmp = path_leaf(inp_f)
    print(tmp)
    output_file = '../saliency_maps/' + tmp

    # Download the model from https://goo.gl/ciEYZi
    saved_model_path = 'crfrnn_keras_model.h5'

    model = get_crfrnn_model_def()
    model.load_weights(saved_model_path)

    img_data, img_h, img_w = util.get_preprocessed_image(input_file)
    probs = model.predict(img_data, verbose=False)[0, :, :, :]
    segmentation = util.get_label_image(probs, img_h, img_w)
    a = np.array(segmentation)
    print(np.shape(a))
    for i in range(a.shape[0]):
        for j in range(a.shape[1]):
            if (a[i][j] > 0):
                a[i][j] = 255
    segmentation = PIL.Image.fromarray(a)
    segmentation.save(output_file)
Exemple #7
0

saved_model_path = "SegmentationModel_Weights.h5"
nTest = 128

font = ImageFont.truetype("/usr/share/fonts/TTF/Anonymous Pro.ttf",
                          8,
                          encoding="unic")
label_seg_gt = u"Segmentation (Ground Truth)"
label_im = u"Image"
label_seg = u"Computed Segmentation"
text_width_gt, text_height_gt = font.getsize(label_seg_gt)
text_width_im, text_height_im = font.getsize(label_im)
text_width_seg, text_height_seg = font.getsize(label_seg)

model = get_crfrnn_model_def()
model.load_weights(saved_model_path, by_name=True)

for i in range(nTest):
    seg_gt, im, im_input = MakeInputData(n=np.random.randint(low=1, high=5))
    probs = model.predict(im_input, verbose=False)[0, :, :, :]
    labels = probs.argmax(axis=2)

    seg_gt = Image.fromarray((seg_gt * 255).astype("uint8"))
    im = Image.fromarray((im * 255).astype("uint8"))
    labels = Image.fromarray((labels * 255).astype("uint8"))
    labels = labels.resize((GenImSize, GenImSize), Image.NEAREST)

    seg_gt = image_tint(seg_gt, tint='#8AFAAB')
    im = image_tint(im, tint='#8AA0FA')
    labels = image_tint(labels, tint='#F98A8A')
Exemple #8
0
def main():
    input_file = 'image.jpg'
    output_file = 'labels.png'

    # Download the model from https://goo.gl/ciEYZi
    saved_model_path = 'crfrnn_keras_model.h5'

    model = get_crfrnn_model_def()

    from keras.optimizers import Adam
    #model = build_model()
    model.compile(optimizer=Adam(),
                  loss='categorical_crossentropy',
                  metrics=['categorical_accuracy'])

    # we create two instances with the same arguments
    data_gen_args = dict(featurewise_center=True,
                         featurewise_std_normalization=True,
                         rotation_range=90,
                         width_shift_range=0.1,
                         height_shift_range=0.1,
                         zoom_range=0.2)
    image_datagen = keras.preprocessing.image.ImageDataGenerator(
        **data_gen_args)
    mask_datagen = keras.preprocessing.image.ImageDataGenerator(
        **data_gen_args)

    # Provide the same seed and keyword arguments to the fit and flow methods
    seed = 1
    #xtrain=/home/qwe/Downloads/crfrnn2/xtrain
    #ytrain='/home/qwe/Downloads/crfrnn2/ytrain'
    #grayx=cv2.cvtColor(xtrain,cv2.COLOR_BGR2GRAY)
    #pathx='/home/qwe/Downloads/crfrnn2/xtrain/*.*'
    #pathy='/home/qwe/Downloads/crfrnn2/ytrain'

    #c2='/home/qwe/Downloads/crfrnn2/ytrain'
    #c1='/home/qwe/Downloads/crfrnn2/xtrain'

    #xtrain= get_image_files(c2)
    #ytrain=get_image_files(c1)
    #image_datagen.fit(xtrain)
    #mask_datagen.fit(ytain, augment=False, seed=seed)

    # Provide the same seed and keyword arguments to the fit and flow methods

    image_generator = image_datagen.flow_from_directory('xtrain',
                                                        target_size=(500, 500),
                                                        class_mode=None,
                                                        seed=seed)

    mask_generator = mask_datagen.flow_from_directory('ytrain',
                                                      target_size=(500, 500),
                                                      class_mode=None,
                                                      seed=seed)

    # combine generators into one which yields image and masks
    train_generator = zip(image_generator, mask_generator)
    #print(type(train_generator),'akash')
    model.fit_generator(train_generator, steps_per_epoch=2000, epochs=50)
    img_data, img_h, img_w = util.get_preprocessed_image(input_file)
    probs = model.predict(img_data, verbose=False)[0, :, :, :]
    segmentation = util.get_label_image(probs, img_h, img_w)
    segmentation.save(output_file)