Exemple #1
0
	def __init__(self, opts):
		self.opts = opts

		self.global_step = 0

		self.device = 'cuda:0'  # TODO: Allow multiple GPU? currently using CUDA_VISIBLE_DEVICES
		self.opts.device = self.device

		if self.opts.use_wandb:
			from utils.wandb_utils import WBLogger
			self.wb_logger = WBLogger(self.opts)

		# Initialize network
		self.net = pSp(self.opts).to(self.device)

		# Estimate latent_avg via dense sampling if latent_avg is not available
		if self.net.latent_avg is None:
			self.net.latent_avg = self.net.decoder.mean_latent(int(1e5))[0].detach()

		# Initialize loss
		if self.opts.id_lambda > 0 and self.opts.moco_lambda > 0:
			raise ValueError('Both ID and MoCo loss have lambdas > 0! Please select only one to have non-zero lambda!')

		self.mse_loss = nn.MSELoss().to(self.device).eval()
		if self.opts.lpips_lambda > 0:
			self.lpips_loss = LPIPS(net_type='alex').to(self.device).eval()
		if self.opts.id_lambda > 0:
			self.id_loss = id_loss.IDLoss().to(self.device).eval()
		if self.opts.w_norm_lambda > 0:
			self.w_norm_loss = w_norm.WNormLoss(start_from_latent_avg=self.opts.start_from_latent_avg)
		if self.opts.moco_lambda > 0:
			self.moco_loss = moco_loss.MocoLoss().to(self.device).eval()

		# Initialize optimizer
		self.optimizer = self.configure_optimizers()

		# Initialize dataset
		self.train_dataset, self.test_dataset = self.configure_datasets()
		self.train_dataloader = DataLoader(self.train_dataset,
										   batch_size=self.opts.batch_size,
										   shuffle=True,
										   num_workers=int(self.opts.workers),
										   drop_last=True)
		self.test_dataloader = DataLoader(self.test_dataset,
										  batch_size=self.opts.test_batch_size,
										  shuffle=False,
										  num_workers=int(self.opts.test_workers),
										  drop_last=True)

		# Initialize logger
		log_dir = os.path.join(opts.exp_dir, 'logs')
		os.makedirs(log_dir, exist_ok=True)
		self.logger = SummaryWriter(log_dir=log_dir)

		# Initialize checkpoint dir
		self.checkpoint_dir = os.path.join(opts.exp_dir, 'checkpoints')
		os.makedirs(self.checkpoint_dir, exist_ok=True)
		self.best_val_loss = None
		if self.opts.save_interval is None:
			self.opts.save_interval = self.opts.max_steps
Exemple #2
0
    def __init__(self, opts, prev_train_checkpoint=None):
        self.opts = opts

        self.global_step = 0

        self.device = 'cuda:0'
        self.opts.device = self.device

        # Initialize network
        self.net = e4e(self.opts).to(self.device)

        # Estimate latent_avg via dense sampling if latent_avg is not available
        if self.net.latent_avg is None:
            self.net.latent_avg = self.net.decoder.mean_latent(
                int(1e5))[0].detach()

        # get the image corresponding to the latent average
        self.avg_image = self.net(self.net.latent_avg.unsqueeze(0),
                                  input_code=True,
                                  randomize_noise=False,
                                  return_latents=False,
                                  average_code=True)[0]
        self.avg_image = self.avg_image.to(self.device).float().detach()
        if self.opts.dataset_type == "cars_encode":
            self.avg_image = self.avg_image[:, 32:224, :]
        common.tensor2im(self.avg_image).save(
            os.path.join(self.opts.exp_dir, 'avg_image.jpg'))

        # Initialize loss
        if self.opts.id_lambda > 0 and self.opts.moco_lambda > 0:
            raise ValueError(
                'Both ID and MoCo loss have lambdas > 0! Please select only one to have non-zero lambda!'
            )
        self.mse_loss = nn.MSELoss().to(self.device).eval()
        if self.opts.lpips_lambda > 0:
            self.lpips_loss = LPIPS(net_type='alex').to(self.device).eval()
        if self.opts.id_lambda > 0:
            self.id_loss = id_loss.IDLoss().to(self.device).eval()
        if self.opts.moco_lambda > 0:
            self.moco_loss = moco_loss.MocoLoss()

        # Initialize optimizer
        self.optimizer = self.configure_optimizers()

        # Initialize discriminator
        if self.opts.w_discriminator_lambda > 0:
            self.discriminator = LatentCodesDiscriminator(512,
                                                          4).to(self.device)
            self.discriminator_optimizer = torch.optim.Adam(
                list(self.discriminator.parameters()),
                lr=opts.w_discriminator_lr)
            self.real_w_pool = LatentCodesPool(self.opts.w_pool_size)
            self.fake_w_pool = LatentCodesPool(self.opts.w_pool_size)

        # Initialize dataset
        self.train_dataset, self.test_dataset = self.configure_datasets()
        self.train_dataloader = DataLoader(self.train_dataset,
                                           batch_size=self.opts.batch_size,
                                           shuffle=True,
                                           num_workers=int(self.opts.workers),
                                           drop_last=True)
        self.test_dataloader = DataLoader(self.test_dataset,
                                          batch_size=self.opts.test_batch_size,
                                          shuffle=False,
                                          num_workers=int(
                                              self.opts.test_workers),
                                          drop_last=True)

        # Initialize logger
        log_dir = os.path.join(opts.exp_dir, 'logs')
        os.makedirs(log_dir, exist_ok=True)
        self.logger = SummaryWriter(log_dir=log_dir)

        # Initialize checkpoint dir
        self.checkpoint_dir = os.path.join(opts.exp_dir, 'checkpoints')
        os.makedirs(self.checkpoint_dir, exist_ok=True)
        self.best_val_loss = None
        if self.opts.save_interval is None:
            self.opts.save_interval = self.opts.max_steps

        if prev_train_checkpoint is not None:
            self.load_from_train_checkpoint(prev_train_checkpoint)
            prev_train_checkpoint = None
    def __init__(self, opts):
        self.opts = opts

        self.global_step = 0

        self.device = 'cuda:0'  # TODO: Allow multiple GPU? currently using CUDA_VISIBLE_DEVICES
        self.opts.device = self.device

        # Initialize network
        self.net = pSp(self.opts).to(self.device)

        # get the image corresponding to the latent average
        self.avg_image = self.net(self.net.latent_avg.unsqueeze(0),
                                  input_code=True,
                                  randomize_noise=False,
                                  return_latents=False,
                                  average_code=True)[0]
        self.avg_image = self.avg_image.to(self.device).float().detach()
        if self.opts.dataset_type == "cars_encode":
            self.avg_image = self.avg_image[:, 32:224, :]
        common.tensor2im(self.avg_image).save(
            os.path.join(self.opts.exp_dir, 'avg_image.jpg'))

        # Initialize loss
        if self.opts.id_lambda > 0 and self.opts.moco_lambda > 0:
            raise ValueError(
                'Both ID and MoCo loss have lambdas > 0! Please select only one to have non-zero lambda!'
            )
        self.mse_loss = nn.MSELoss().to(self.device).eval()
        if self.opts.lpips_lambda > 0:
            self.lpips_loss = LPIPS(net_type='alex').to(self.device).eval()
        if self.opts.id_lambda > 0:
            self.id_loss = id_loss.IDLoss().to(self.device).eval()
        if self.opts.w_norm_lambda > 0:
            self.w_norm_loss = w_norm.WNormLoss(
                start_from_latent_avg=self.opts.start_from_latent_avg)
        if self.opts.moco_lambda > 0:
            self.moco_loss = moco_loss.MocoLoss()

        # Initialize optimizer
        self.optimizer = self.configure_optimizers()

        # Initialize dataset
        self.train_dataset, self.test_dataset = self.configure_datasets()
        self.train_dataloader = DataLoader(self.train_dataset,
                                           batch_size=self.opts.batch_size,
                                           shuffle=True,
                                           num_workers=int(self.opts.workers),
                                           drop_last=True)
        self.test_dataloader = DataLoader(self.test_dataset,
                                          batch_size=self.opts.test_batch_size,
                                          shuffle=False,
                                          num_workers=int(
                                              self.opts.test_workers),
                                          drop_last=True)

        # Initialize logger
        log_dir = os.path.join(opts.exp_dir, 'logs')
        os.makedirs(log_dir, exist_ok=True)
        self.logger = SummaryWriter(log_dir=log_dir)

        # Initialize checkpoint dir
        self.checkpoint_dir = os.path.join(opts.exp_dir, 'checkpoints')
        os.makedirs(self.checkpoint_dir, exist_ok=True)
        self.best_val_loss = None
        if self.opts.save_interval is None:
            self.opts.save_interval = self.opts.max_steps
Exemple #4
0
    def __init__(self, opts, prev_train_checkpoint=None):
        self.opts = opts

        self.global_step = 0

        self.device = 'cuda:0'
        self.opts.device = self.device
        # Initialize network
        self.net = pSp(self.opts).to(self.device)

        # Initialize loss
        if self.opts.lpips_lambda > 0:
            self.lpips_loss = LPIPS(net_type=self.opts.lpips_type).to(
                self.device).eval()
        if self.opts.id_lambda > 0:
            if 'ffhq' in self.opts.dataset_type or 'celeb' in self.opts.dataset_type:
                self.id_loss = id_loss.IDLoss().to(self.device).eval()
            else:
                self.id_loss = moco_loss.MocoLoss(opts).to(self.device).eval()
        self.mse_loss = nn.MSELoss().to(self.device).eval()

        # Initialize optimizer
        self.optimizer = self.configure_optimizers()

        # Initialize discriminator
        if self.opts.w_discriminator_lambda > 0:
            self.discriminator = LatentCodesDiscriminator(512,
                                                          4).to(self.device)
            self.discriminator_optimizer = torch.optim.Adam(
                list(self.discriminator.parameters()),
                lr=opts.w_discriminator_lr)
            self.real_w_pool = LatentCodesPool(self.opts.w_pool_size)
            self.fake_w_pool = LatentCodesPool(self.opts.w_pool_size)

        # Initialize dataset
        self.train_dataset, self.test_dataset = self.configure_datasets()
        self.train_dataloader = DataLoader(self.train_dataset,
                                           batch_size=self.opts.batch_size,
                                           shuffle=True,
                                           num_workers=int(self.opts.workers),
                                           drop_last=True)
        self.test_dataloader = DataLoader(self.test_dataset,
                                          batch_size=self.opts.test_batch_size,
                                          shuffle=False,
                                          num_workers=int(
                                              self.opts.test_workers),
                                          drop_last=True)

        # Initialize logger
        log_dir = os.path.join(opts.exp_dir, 'logs')
        os.makedirs(log_dir, exist_ok=True)
        self.logger = SummaryWriter(log_dir=log_dir)

        # Initialize checkpoint dir
        self.checkpoint_dir = os.path.join(opts.exp_dir, 'checkpoints')
        os.makedirs(self.checkpoint_dir, exist_ok=True)
        self.best_val_loss = None
        if self.opts.save_interval is None:
            self.opts.save_interval = self.opts.max_steps

        if prev_train_checkpoint is not None:
            self.load_from_train_checkpoint(prev_train_checkpoint)
            prev_train_checkpoint = None