Exemple #1
0
                        len(alphabet) + 1,
                        nh,
                        n_rnn=2,
                        leakyRelu=False,
                        lstmFlag=LSTMFLAG)
elif crnn_type == "lite_lstm" or crnn_type == "lite_dense":
    crnn_net = LiteCrnn(32,
                        1,
                        len(alphabet) + 1,
                        nh,
                        n_rnn=2,
                        leakyRelu=False,
                        lstmFlag=LSTMFLAG)

assert crnn_type is not None
crnn_handle = CRNNHandle(crnn_model_path, crnn_net, gpu_id=GPU_ID)

crnn_vertical_handle = None
if crnn_vertical_model_path is not None:
    crnn_vertical_net = LiteCrnn(32,
                                 1,
                                 len(alphabet) + 1,
                                 nh,
                                 n_rnn=2,
                                 leakyRelu=False,
                                 lstmFlag=True)
    crnn_vertical_handle = CRNNHandle(crnn_vertical_model_path,
                                      crnn_vertical_net,
                                      gpu_id=GPU_ID)

assert angle_type in ["shufflenetv2_05"]
Exemple #2
0
class OcrHandle(object):
    def __init__(self):
        self.text_handle = DBNET(model_path)
        self.crnn_handle = CRNNHandle(crnn_model_path)
        if angle_detect:
            self.angle_handle = AngleNetHandle(angle_net_path)

    def crnnRecWithBox(self, im, boxes_list, score_list):
        """
        crnn模型,ocr识别
        @@model,
        @@converter,
        @@im:Array
        @@text_recs:text box
        @@ifIm:是否输出box对应的img

        """
        results = []
        boxes_list = sorted_boxes(np.array(boxes_list))

        line_imgs = []
        for index, (box, score) in enumerate(
                zip(boxes_list[:angle_detect_num],
                    score_list[:angle_detect_num])):
            tmp_box = copy.deepcopy(box)
            partImg_array = get_rotate_crop_image(im,
                                                  tmp_box.astype(np.float32))
            partImg = Image.fromarray(partImg_array).convert("RGB")
            line_imgs.append(partImg)

        angle_res = False
        if angle_detect:
            angle_res = self.angle_handle.predict_rbgs(line_imgs)

        count = 1
        for index, (box, score) in enumerate(zip(boxes_list, score_list)):

            tmp_box = copy.deepcopy(box)
            partImg_array = get_rotate_crop_image(im,
                                                  tmp_box.astype(np.float32))

            partImg = Image.fromarray(partImg_array).convert("RGB")

            if angle_detect and angle_res:
                partImg = partImg.rotate(180)

            if not is_rgb:
                partImg = partImg.convert('L')

            try:
                if is_rgb:
                    simPred = self.crnn_handle.predict_rbg(partImg)  ##识别的文本
                else:
                    simPred = self.crnn_handle.predict(partImg)  ##识别的文本
            except Exception as e:
                print(traceback.format_exc())
                continue

            if simPred.strip() != '':
                results.append([tmp_box, simPred, score])
                count += 1

        return results

    def text_predict(self, img, short_size):
        boxes_list, score_list = self.text_handle.process(
            np.asarray(img).astype(np.uint8), short_size=short_size)
        result = self.crnnRecWithBox(np.array(img), boxes_list, score_list)

        return result
Exemple #3
0
 def __init__(self):
     self.text_handle = DBNET(model_path)
     self.crnn_handle = CRNNHandle(crnn_model_path)
     if angle_detect:
         self.angle_handle = AngleNetHandle(angle_net_path)
Exemple #4
0
                        len(alphabet) + 1,
                        nh,
                        n_rnn=2,
                        leakyRelu=False,
                        lstmFlag=LSTMFLAG)
elif crnn_type == "lite_lstm" or crnn_type == "lite_dense":
    crnn_net = LiteCrnn(32,
                        1,
                        len(alphabet) + 1,
                        nh,
                        n_rnn=2,
                        leakyRelu=False,
                        lstmFlag=LSTMFLAG)

assert crnn_type is not None
crnn_handle = CRNNHandle(crnn_model_path, crnn_net, gpu_id=GPU_ID)

assert angle_type in ["shufflenetv2_05"]

if angle_type == "shufflenetv2_05":
    angle_net = shufflenet_v2_x0_5(num_classes=len(lable_map_dict),
                                   pretrained=False)

angle_handle = AangleClassHandle(angle_model_path, angle_net, gpu_id=GPU_ID)


def crnnRec(im,
            rects_re,
            leftAdjust=False,
            rightAdjust=False,
            alph=0.2,