data_inverse_permutation_indices, num_rows, num_cols, num_views, num_clusters)
    X_L_gen, X_D_gen = ttu.get_generative_clustering(M_c, M_r, T,
            data_inverse_permutation_indices, num_clusters, num_views)
    T_test = ctu.create_test_set(M_c, T, X_L_gen, X_D_gen, n_test, seed_seed=0)
    #
    generative_mean_test_log_likelihood = ctu.calc_mean_test_log_likelihood(M_c, T,
            X_L_gen, X_D_gen, T_test)


    # run some tests
    engine = MultiprocessingEngine(seed=inf_seed)
    # single state test
    single_state_ARIs = []
    single_state_mean_test_lls = []
    X_L, X_D = engine.initialize(M_c, M_r, T, n_chains=1)
    single_state_ARIs.append(ctu.get_column_ARI(X_L, view_assignment_truth))
    single_state_mean_test_lls.append(
            ctu.calc_mean_test_log_likelihood(M_c, T, X_L, X_D, T_test)
            )
    for time_i in range(n_times):
        X_L, X_D = engine.analyze(M_c, T, X_L, X_D, n_steps=n_steps)
        single_state_ARIs.append(ctu.get_column_ARI(X_L, view_assignment_truth))
        single_state_mean_test_lls.append(
            ctu.calc_mean_test_log_likelihood(M_c, T, X_L, X_D, T_test)
            )
    # multistate test
    multi_state_ARIs = []
    multi_state_mean_test_lls = []
    X_L_list, X_D_list = engine.initialize(M_c, M_r, T, n_chains=n_chains)
    multi_state_ARIs.append(ctu.get_column_ARIs(X_L_list, view_assignment_truth))
    multi_state_mean_test_lls.append(ctu.calc_mean_test_log_likelihoods(M_c, T,
Exemple #2
0
def get_ari(p_State):
    # requires environment: {view_assignment_truth}
    # requires import: {crosscat.utils.convergence_test_utils}
    X_L = p_State.get_X_L()
    ctu = crosscat.utils.convergence_test_utils
    return ctu.get_column_ARI(X_L, view_assignment_truth)
def convergence_analyze_helper(table_data, data_dict, command_dict):
    gen_seed = data_dict['SEED']
    num_clusters = data_dict['num_clusters']
    num_cols = data_dict['num_cols']
    num_rows = data_dict['num_rows']
    num_views = data_dict['num_views']
    max_mean = data_dict['max_mean']
    n_test = data_dict['n_test']
    num_transitions = data_dict['n_steps']
    block_size = data_dict['block_size']
    init_seed = data_dict['init_seed']


    # generate some data
    T, M_r, M_c, data_inverse_permutation_indices = \
            du.gen_factorial_data_objects(gen_seed, num_clusters,
                    num_cols, num_rows, num_views,
                    max_mean=max_mean, max_std=1,
                    send_data_inverse_permutation_indices=True)
    view_assignment_ground_truth = \
            ctu.determine_synthetic_column_ground_truth_assignments(num_cols,
                    num_views)
    X_L_gen, X_D_gen = ttu.get_generative_clustering(M_c, M_r, T,
            data_inverse_permutation_indices, num_clusters, num_views)
    T_test = ctu.create_test_set(M_c, T, X_L_gen, X_D_gen, n_test, seed_seed=0)
    generative_mean_test_log_likelihood = \
            ctu.calc_mean_test_log_likelihood(M_c, T, X_L_gen, X_D_gen, T_test)

    # additional set up
    engine=LE.LocalEngine(init_seed)
    column_ari_list = []
    mean_test_ll_list = []
    elapsed_seconds_list = []

    # get initial ARI, test_ll
    with gu.Timer('initialize', verbose=False) as timer:
        X_L, X_D = engine.initialize(M_c, M_r, T, initialization='from_the_prior')
    column_ari = ctu.get_column_ARI(X_L, view_assignment_ground_truth)
    column_ari_list.append(column_ari)
    mean_test_ll = ctu.calc_mean_test_log_likelihood(M_c, T, X_L, X_D,
            T_test)
    mean_test_ll_list.append(mean_test_ll)
    elapsed_seconds_list.append(timer.elapsed_secs)

    # run blocks of transitions, recording ARI, test_ll progression
    completed_transitions = 0
    n_steps = min(block_size, num_transitions)
    while (completed_transitions < num_transitions):
        # We won't be limiting by time in the convergence runs
        with gu.Timer('initialize', verbose=False) as timer:
             X_L, X_D = engine.analyze(M_c, T, X_L, X_D, kernel_list=(),
                     n_steps=n_steps, max_time=-1)
        completed_transitions = completed_transitions + block_size
        #
        column_ari = ctu.get_column_ARI(X_L, view_assignment_ground_truth)
        column_ari_list.append(column_ari)
        mean_test_ll = ctu.calc_mean_test_log_likelihood(M_c, T, X_L, X_D,
                T_test)
        mean_test_ll_list.append(mean_test_ll)
        elapsed_seconds_list.append(timer.elapsed_secs)

    ret_dict = dict(
        num_rows=num_rows,
        num_cols=num_cols,
        num_views=num_views,
        num_clusters=num_clusters,
        max_mean=max_mean,
        column_ari_list=column_ari_list,
        mean_test_ll_list=mean_test_ll_list,
        generative_mean_test_log_likelihood=generative_mean_test_log_likelihood,
        elapsed_seconds_list=elapsed_seconds_list,
        n_steps=num_transitions,
        block_size=block_size,
        )
    return ret_dict
def convergence_analyze_helper(table_data, data_dict, command_dict):
    gen_seed = data_dict['SEED']
    num_clusters = data_dict['num_clusters']
    num_cols = data_dict['num_cols']
    num_rows = data_dict['num_rows']
    num_views = data_dict['num_views']
    max_mean = data_dict['max_mean']
    n_test = data_dict['n_test']
    num_transitions = data_dict['n_steps']
    block_size = data_dict['block_size']
    init_seed = data_dict['init_seed']

    # generate some data
    T, M_r, M_c, data_inverse_permutation_indices = \
            du.gen_factorial_data_objects(gen_seed, num_clusters,
                    num_cols, num_rows, num_views,
                    max_mean=max_mean, max_std=1,
                    send_data_inverse_permutation_indices=True)
    view_assignment_ground_truth = \
            ctu.determine_synthetic_column_ground_truth_assignments(num_cols,
                    num_views)
    X_L_gen, X_D_gen = ttu.get_generative_clustering(
        M_c, M_r, T, data_inverse_permutation_indices, num_clusters, num_views)
    T_test = ctu.create_test_set(M_c, T, X_L_gen, X_D_gen, n_test, seed_seed=0)
    generative_mean_test_log_likelihood = \
            ctu.calc_mean_test_log_likelihood(M_c, T, X_L_gen, X_D_gen, T_test)

    # additional set up
    engine = LE.LocalEngine(init_seed)
    column_ari_list = []
    mean_test_ll_list = []
    elapsed_seconds_list = []

    # get initial ARI, test_ll
    with gu.Timer('initialize', verbose=False) as timer:
        X_L, X_D = engine.initialize(M_c,
                                     M_r,
                                     T,
                                     initialization='from_the_prior')
    column_ari = ctu.get_column_ARI(X_L, view_assignment_ground_truth)
    column_ari_list.append(column_ari)
    mean_test_ll = ctu.calc_mean_test_log_likelihood(M_c, T, X_L, X_D, T_test)
    mean_test_ll_list.append(mean_test_ll)
    elapsed_seconds_list.append(timer.elapsed_secs)

    # run blocks of transitions, recording ARI, test_ll progression
    completed_transitions = 0
    n_steps = min(block_size, num_transitions)
    while (completed_transitions < num_transitions):
        # We won't be limiting by time in the convergence runs
        with gu.Timer('initialize', verbose=False) as timer:
            X_L, X_D = engine.analyze(M_c,
                                      T,
                                      X_L,
                                      X_D,
                                      kernel_list=(),
                                      n_steps=n_steps,
                                      max_time=-1)
        completed_transitions = completed_transitions + block_size
        #
        column_ari = ctu.get_column_ARI(X_L, view_assignment_ground_truth)
        column_ari_list.append(column_ari)
        mean_test_ll = ctu.calc_mean_test_log_likelihood(
            M_c, T, X_L, X_D, T_test)
        mean_test_ll_list.append(mean_test_ll)
        elapsed_seconds_list.append(timer.elapsed_secs)

    ret_dict = dict(
        num_rows=num_rows,
        num_cols=num_cols,
        num_views=num_views,
        num_clusters=num_clusters,
        max_mean=max_mean,
        column_ari_list=column_ari_list,
        mean_test_ll_list=mean_test_ll_list,
        generative_mean_test_log_likelihood=generative_mean_test_log_likelihood,
        elapsed_seconds_list=elapsed_seconds_list,
        n_steps=num_transitions,
        block_size=block_size,
    )
    return ret_dict
def get_ari(p_State):
    # requires environment: {view_assignment_truth}
    # requires import: {crosscat.utils.convergence_test_utils}
    X_L = p_State.get_X_L()
    ctu = crosscat.utils.convergence_test_utils
    return ctu.get_column_ARI(X_L, view_assignment_truth)