def answer1(x, y): # your code here id = 0 for i in range(x): id += i + 1 for j in range(y): id += j return str((x + y - 2) * (x + y - 1) / 2 + x)
def prblm2(n): myList= range(1,n) print(myList) #squareList = map(makeSquare, myList) #print(squareList) #listSum = sum(squareList) #return listSum return reduce(sum, map(makeSquare, range(1,n)))
def __str__(self): result = '|' for row in range(len(self.__board)): for col in range(self.__width): result += self.__board[row][col] + '|' result += '\n|' result = result[:-2] result += '\n' + (((self.__width*2) +1) * '-') + '\n' for x in range(self.__width): result += ' ' + str(x) return result
def prime(n): '''Returns True if the number is prime, or False if composite. Given a positive integer n.''' if n in [0,1]: return False elif True in (map(divides(n),(range(2,n)))): return False return True
def prime(n): """return whether or not an integer is prime""" possible_divisors = range(2, int(math.sqrt(n))) divisors = filter(lambda x: n % x == 0, possible_divisors) if (divisors == []): return True return len(divisors) == 0
def delMove(self, col): '''deletes the top x or o in a column''' if self.allowsMove(col) == True: for row in range(len(self.__board)): if self.__board[row][col] != ' ': self.__board[row][col] = ' ' break
def primes(n): def sieve(lst): if lst == []: return [] return [lst[0]] + sieve(filter(lambda x: x % lst[0] != 0, lst[1:])) return sieve(range(2, n + 1))
def winsFor(self, ox): '''returns a bool determining if anyone wins on the current board state''' for directionx, directiony in [[1, -1], [1, 1], [1, 0], [0, 1]]: for row in range(len(self.__board)): for col in range(self.__width): count = 0 for check in range(self.__width): if row + check * directiony >= self.__height or col + check * directionx >= self.__width: break current = self.__board[row + check * directiony][col + check * directionx] if current == ox: count += 1 else: count = 0 if count >= 4: return True return False
def e(n): '''Approximates the mathematical value e using a Taylor expansion.''' numberList = range(1, n + 1) factorialList = map(math.factorial, numberList) inverseList = map(inverse, factorialList) addedList = reduce(add, inverseList) return 1 + addedList
def prime_below(n): '''Returns the list of all prime numbers less than or equal to n.''' def sieve(lst): if lst == []: return [] return [lst[0]] + sieve(filter(lambda x: x % lst[0] != 0, lst[1:])) return sieve(range(2, n + 1))
def primes(n): """returns a list of primes in the range [2,n] computed via the sieve of Erathosthenes. - pronounced civ (civ 5)""" def sieve(lst): if lst == []: return [] return [lst[0]] + sieve(filter(lambda x: x % lst[0] != 0, lst[1:])) return sieve(range(2, n + 1))
def addMove(self, col, ox): '''adds the move to the board''' if ox == 'X' or ox == 'O': if self.allowsMove(col) == True: for row in range(len(self.__board)): if self.__board[row][col] != ' ': self.__board[row - 1][col] = ox break elif self.__board[row][col] == ' ' and row == self.__width - 2: self.__board[self.__height - 1][col] = ox
def prime(n): '''detects whether a number is prime or not.''' ##is n divisible by any number other than 1 and n?? '''if True in map(divides(n),range(2,n)) or n == 0 or n == 1: ## divides is taking the variables as argument but it needs to be n and divided by the variables.## return False return True ''' possible_divisors = range(2, math.ceil(math.sqrt(n) + 1)) f = divides(n) composite_lst = map(f, possible_divisors) return not reduce(sum, composite_lst)
def helper(start, finish): if (finish - start == 1): #only 1 long return start if (finish - start == 0): #no range return 0 if (finish - start < 5): #if length is less than 5, return the power (I don't #know why, but this just works return reduce(lambda a, b: a ^ b, range(start, finish)) else: #gives the end of the worker list fed into the recursive function #this function makes the correct list to look at in the function return helper(start, start / 4 * 4 + 4) ^ helper( finish / 4 * 4, finish)
def __init__(self, width = 7, height = 6): self.__width = width self.__height = height self.__board = [] ''' for i in range(width): self.__board.append([]) for j in range(height): self.__board[i].append(' ') ''' for i in range(height): self.__board.append([' '] * self.__width)
def answer3(start, length): #list of workers is always from length^2-l+start to that +l list_of_workers = [(length * (length - l) + start, length * (length - l) + start + l) for l in range(length, 0, -1)] def helper(start, finish): if (finish - start == 1): #only 1 long return start if (finish - start == 0): #no range return 0 if (finish - start < 5): #if length is less than 5, return the power (I don't #know why, but this just works return reduce(lambda a, b: a ^ b, range(start, finish)) else: #gives the end of the worker list fed into the recursive function #this function makes the correct list to look at in the function return helper(start, start / 4 * 4 + 4) ^ helper( finish / 4 * 4, finish) #the new list is inputted from the helper method, from start to finish new_xor = [helper(start, finish) for start, finish in list_of_workers] return reduce(lambda a, b: a ^ b, new_xor)
def sumOfSquares(n): return reduce(add, map(sqr, range(1, n + 1)))
def gauss(n): #return sum(range(1, n + 1)) return reduce(add, range(1, n + 1))
def sum_of_squares(n): return reduce(map(sqr, range(1, n + 1)))
def gauss(n): return reduce(add, range(1, n + 1))
def prime(n): '''checks if a number is prime or composite''' return (sum(map(divides(n), range(2, n))) == 0)
def factorial(n): '''returns the factorial of n''' return reduce(mult, range(1, n+1))
def sum_of_squares(n): '''Takes as input a positive integer in and returns the sum: 1^2 + 2^2 + 3^2... n^2''' return reduce(add, map(square, range(1, n + 1)))
def gauss(n): '''Takes as input a positive integer in and returns the sum: 1+2+3+...n''' return reduce(add, range(1, n + 1))
def prime(n): """Returns True if n is prime and False if n is not""" if map(divides(n), list(range(2, n))) == [False] * (n - 2): return True return False
def factorial(n): """Returns n!""" return reduce(mult, list(range(1, n + 1)))
def prime(n): '''Returns True if n is prime and False otherwise by testing all possible divisors from 2 to n-1 or sqrt of n.''' possible_divisors = range(2, int(math.sqrt(n)) + 1) divisors = filter(lambda x: n % x == 0, possible_divisors) return len(divisors) == 0
def gauss(n): """takes as input a positive integer n and returns the sum 1 + 2 + 3... """ return reduce(add, range(1, n + 1))
def sum_of_squares(n): """takes as input a positive integer a and returns the sum 1^2 + 2^2 + 3^2...n^2""" return reduce(add, map(square, range(1, n + 1)))
def sum_of_squares(n): """Takes as input a positive integer n and return the sum 1^2 + 2^2 + 3^2 +... + n^2""" return reduce(add, map(sqr, range(1, n + 1)))