Exemple #1
0
def test_transition():
    X = cse.Cse('O2', dirpath='../../examples/potentials', suffix='.dat',
                VT=['X3S-1'], en=800)
    B = cse.Cse('O2', dirpath='../../examples/potentials', suffix='.dat',
                VT=['B3S-1'])

    BX = cse.Transition(B, X, dipolemoment=[1])
    BX.calculate_xs(transition_energy=[51968,])

    npt.assert_almost_equal(BX.wavenumber, 51968.39, decimal=2)
Exemple #2
0
def test_coupled_channel():
    X = cse.Cse('O2', dirpath='../../examples/potentials', suffix='.dat',
                VT=['X3S-1'], en=800)
    BE = cse.Cse('O2', dirpath='../../examples/potentials', suffix='.dat',
                 VT=['B3S-1', 'E3S-1'], coup=[4000])
    BEX = cse.Transition(BE, X, dipolemoment=[1, 0])

    # O₂ Longest-band
    BEX.calculate_xs(transition_energy=np.arange(81300, 81390, 4))

    npt.assert_almost_equal(BEX.wavenumber[BEX.xs[:, 0].argmax()], 81344,
                            decimal=0)
Exemple #3
0
import numpy as np
import cse
import scipy.constants as C
from scipy.integrate.quadrature import simps
import matplotlib.pyplot as plt

# ground state
O2X = cse.Cse('16O16O', VT=['potentials/X3S-1.dat'], en=800)
O2B = cse.Cse('16O16O', VT=['potentials/B3S-1.dat'])

O2 = cse.Transition(O2B,
                    O2X,
                    dipolemoment=['transitionmoments/dipole_b_valence.dat'])
R = O2.gs.R

# B-X transition energy guesses
bands = [
    49357, 50045, 50710, 51352, 51968, 52560, 53123, 53655, 54157, 54622,
    55051, 55439, 55785, 56086, 56341, 56551, 56720, 56853, 56955, 57032,
    57087, 57121
]

# alternatively evaluate transition energies via calculation
# O2.us.levels(vmax=21) #  B-state energy levels (cm-1)
# print(O2.us)  # view levels
# bands = np.array(sorted([i[0] for i in O2.us.calc.values()])) - O2.gs.cm  # transition energies (cm-1)

O2.calculate_xs(transition_energy=bands)
osc = O2.xs

Yv, Yosc, Yerr = np.loadtxt("data/O2osc-Yoshino.dat", unpack=True)
Exemple #4
0
fexp = np.loadtxt('data/O2osc-Yoshino.dat', unpack=True)

# energy ranges for calculation in cm-1
bands = np.array([
    49357.4, 50044.9, 50710, 51351.5, 51968.4, 52559.6, 53122.6, 53655.3,
    54156.5, 54622.1, 55051, 55439.5, 55784.8, 56085.6, 56340.7, 56551.1,
    56720.1, 56852.7, 56955.2, 57032.5, 57086.9, 57120.7
])

continuum = np.arange(57300, 85000, 100)

# CSE model Schumann-Runge B ^3Sigma_u^- <- X ^3Sigma_g^- single channel ----
O2X = cse.Cse('16O16', VT=['potentials/X3S-1.dat'], en=800)
O2B = cse.Cse('16O16', VT=['potentials/B3S-1.dat'])

O2bands = cse.Transition(
    O2B, O2X, dipolemoment=['transitionmoments/dipole_b_valence.dat'])

# transition energies may also be determined from the next 2 lines
#  O2bands.us.levels()
#  bands = sorted([i[0] for i in O2bands.us.results.values()]) - O2bands.gs.cm  # transition energies (cm-1)

lb = len(bands)
vib = np.arange(lb)

# CSE ^3Sigma_u^- valence and Rydbergs coupled channels -------
O2Bcoup = cse.Cse('16O16',
                  VT=[
                      'potentials/3S-1v.dat', 'potentials/3S-1r.dat',
                      'potentials/3S-1r2.dat'
                  ],
                  coup=[4033, 2023, 0])
Exemple #5
0
evcm = 8065.541  # conversion factor eV -> cm-1

wavelength = np.arange(110, 174.1, 0.1)  # nm

# O2 ground state X
X = cse.Cse('O2', VT=['potentials/X3S-1.dat'], en=800)

# O2 upper coupled B-state
B = cse.Cse('O2',
            dirpath='potentials',
            suffix='.dat',
            VT=['B3S-1', '3P1', 'E3S-1', '3PR1'],
            coup=[40, 4000, 0, 0, 7000, 0])

# transition
BX = cse.Transition(B, X, dipolemoment=[1, 0, 0, 0.3])

print('CSE: calculating cross section speeded by Python multiprocessing'
      ' Pool.map')
print(f'     from {wavelength[0]:.0f} to {wavelength[-1]:.0f} in '
      f'{wavelength[1]-wavelength[0]:.2f} nm steps ... ')

t0 = time.time()
BX.calculate_xs(transition_energy=wavelength)
print(f'CSE: ...  in {time.time()-t0:.2g} seconds')

print(f'CSE: E(v"={BX.gs.vib:d}) = {BX.gs.cm:.2f} cm-1, {BX.gs.energy:.3g} eV')

# graphics ---------------------------------------
ax0 = plt.subplot2grid((2, 4), (0, 0), colspan=2, rowspan=2)
ax1 = plt.subplot2grid((2, 4), (0, 2), colspan=2, rowspan=2)
Exemple #6
0
ax0.axis(xmin=0.5, xmax=3, ymin=-10000, ymax=80000)

# C2 D-X FCF calculation 
#  published values Sorkhabi et al. J. Molec. Spectrosc. 188, 200-208 (1998)
#  DXFCF[v", v']
Sorkhabi_FCF = np.array([[0.9972, 2.72e-3, 8.807e-5, 3.676e-7, 5.04e-9],
                         [2.642e-3, 0.9922, 4.842e-3, 2.692e-4, 1.929e-6],
                         [1.644e-4, 4.547e-3, 0.9883, 6.447e-3, 5.494e-4],
                         [5.995e-6, 4.596e-4, 5.846e-3, 0.9847, 8.00e-3],
                         [2.59e-7, 1.76e-8, 0.001, 0.017, 0.9802]])

# CSE calculation ---------------------
print("\nCSE FCF calculation -------------------")
C2X = cse.Cse('12C12C', VT=[(RX, X1S0)])
C2D = cse.Cse('12C12C', VT=[(RD, D1S0)])
C2 = cse.Transition(C2D, C2X, dipolemoment=[1])

C2.gs.solve(1000)
print(f'X(v"={C2.gs.vib:d}) = {C2.gs.cm:10.5f} cm-1')
ax0.plot(C2.gs.R, C2.gs.wavefunction.T[0, 0]*4000+C2.gs.energy)

# ground state eigenvalues - calculate every vibrational level = slow
# C2.gs.levels(4)
# enX = C2.gs.results[0][0]

# upper state eigenvalues - all levels = slow, but need the accurate 
# print('calculating upper state eigenvalues, will take a little while ...')
# C2.us.levels(4)
# vibD = C2.us.results.keys()
# enD = np.asarray(list(zip(*C2.us.results.values()))[0])
import numpy as np
import cse
import matplotlib.pyplot as plt

# instance
O2X = cse.Cse('16O16O', VT=['potentials/X3S-1.dat'], en=800)
O2B = cse.Cse('16O16O', VT=['potentials/B3S-1.dat'])

O2 = cse.Transition(O2B, O2X, dipolemoment=[1])

# B-X transition energy guesses
bands = [
    49357, 50045, 50710, 51352, 51968, 52560, 53123, 53655, 54157, 54622,
    55051, 55439, 55785, 56086, 56341, 56551, 56720, 56853, 56955, 57032,
    57087, 57121
]

O2.calculate_xs(transition_energy=bands)
osc = O2.xs

Kvd, Kvdd, KdE, Kfcf = np.loadtxt("data/O2BX-FCF-Krupenie.dat", unpack=True)
Kv0 = int(Kvd[0])

fcf = []
print(r" v'     FCF_cse      FCF_Krupenie")
for v, f in enumerate(osc):
    f = f[0] * 1.0e6 / bands[v] / 3
    fcf.append(f)
    if v in Kvd:
        print(f'{v:2d}   {f:10.3e}   {Kfcf[v-Kv0]:10.3e}')
    else: