def getDLSDataset(VAD_tr_LOG1,VAD_tr_GCC1,SLOC_tr_LOG_X,SLOC_tr_GCC_X,ax,ay,numberdir_fittizio,pathdir_fittizio,context,numContext,dirAudio2,fi,nameplace,mic_log_mel): for numerocartelle in range(1,numberdir_fittizio): print 'training folder number: '+str(numerocartelle) dira=pathdir_fittizio+'audio'+str(int(numerocartelle))+'/'+'audio'+str(int(numerocartelle)) from funzioniSupplementari import getMic16 AUDIO16=getMic16(nameplace,dira) #print AUDIO16 del getMic16 l=len(AUDIO16[0])/hopframe AUDIO16=np.asarray(AUDIO16) filesource=pathdir_fittizio+'audio'+str(int(numerocartelle))+'/'+'audio'+str(int(numerocartelle))+formattext from funzioniSupplementari import positionSource16 POSSOURCE=positionSource16(filesource) del positionSource16,filesource CSPREAL=[] POSTEMP=[] for i in range(l): POSTEMP.append(POSSOURCE[0]) POSSOURCE=np.asarray(POSTEMP) del POSTEMP getCSP(l,lun,N,fi,AUDIO16,window,CSPREAL) CSPREAL=np.asarray(CSPREAL) CSPTEMP=organizeGCC(CSPREAL,fi,kmax,l) del CSPREAL LOGMEL=[] for i in range(0,mic_log_mel): vector=logfbank(AUDIO16[i],rate,nfilt=numfilter,winlen=(float(lenframe)/float(rate)),winstep=(float(hopframe)/float(rate)),nfft=lenframe) vector=sklearn.preprocessing.normalize(vector) LOGMEL.append(vector) del AUDIO16,vector for i in range(10,l-10): MatrixInputLOG=np.zeros(shape=(mic_log_mel,context,numfilter)) MatrixInputGCC=np.zeros(shape=(len(fi),context,kmax)) n=0 while n<context: t=0 if (i-numContext+n<0) or (i-numContext+n)>=l: t=i else: t=i-numContext+n for j in range(mic_log_mel): MatrixInputLOG[j,n]=LOGMEL[j][t] for j in range(len(fi)): MatrixInputGCC[j,n]=CSPTEMP[t,j] n=n+1 VAD_tr_LOG1.append(MatrixInputLOG) VAD_tr_GCC1.append(MatrixInputGCC) if POSSOURCE[i][0]!=0 or POSSOURCE[i][1]!=0 or POSSOURCE[i][2]!=0: SLOC_tr_GCC_X.append([float(POSSOURCE[i][0])/ax,float(POSSOURCE[i][1])/ay]) SLOC_tr_LOG_X.append([0,1]) else: SLOC_tr_LOG_X.append([1,0]) SLOC_tr_GCC_X.append([-1,-1])
def getDLSDataset(VAD_tr_GCC1, SLOC_tr_GCC_X, ax, ay, numberdir_fittizio, pathdir_fittizio, context, numContext, dirAudio2, fi, nameplace, mic_log_mel): for numerocartelle in range(1, numberdir_fittizio): print 'training folder number: ' + str(numerocartelle) dira = pathdir_fittizio + 'audio' + str( int(numerocartelle)) + '/' + 'audio' + str(int(numerocartelle)) from funzioniSupplementari import getMic16 AUDIO16 = getMic16(nameplace, dira) #print AUDIO16 del getMic16 l = len(AUDIO16[0]) / hopframe AUDIO16 = np.asarray(AUDIO16) filesource = pathdir_fittizio + 'audio' + str( int(numerocartelle)) + '/' + 'audio' + str( int(numerocartelle)) + formattext from funzioniSupplementari import positionSource16 POSSOURCE = positionSource16(filesource) del positionSource16, filesource CSPREAL = [] POSTEMP = [] for i in range(l): POSTEMP.append(POSSOURCE[0]) POSSOURCE = np.asarray(POSTEMP) del POSTEMP getCSP(l, lun, N, fi, AUDIO16, window, CSPREAL) CSPREAL = np.asarray(CSPREAL) CSPTEMP = organizeGCC(CSPREAL, fi, kmax, l) del CSPREAL, AUDIO16 for i in range(l): if POSSOURCE[i][0] != 0 or POSSOURCE[i][1] != 0 or POSSOURCE[i][ 2] != 0: MatrixInput1 = np.zeros(shape=(len(fi), context, kmax)) n = 0 while n < context: t = 0 if (i - numContext + n < 0) or (i - numContext + n) >= l: t = i else: t = i - numContext + n for j in range(len(fi)): MatrixInput1[j, n] = CSPTEMP[t, j] n = n + 1 for j in range(len(fi)): VAD_tr_GCC1[j].append(MatrixInput1[j]) SLOC_tr_GCC_X.append( [float(POSSOURCE[i][0]) / ax, float(POSSOURCE[i][1]) / ay])
def startSimulationSingleChannel(context, CNNkernel, sizekernelCNN, stridesCNN, DenseNeuron, nameplace, dir_training, ax, ay, numContext, dirAudio2, fi, mic_log_mel, hsc, fittizio, simulatedcheck, realcheck, numberdir_fittizio, pathdir_fittizio): pathsave = 'Single_Channel' + dir_training + '/' pathsave = pathsave + 'context' + str(context) + '/' pathsave = pathsave + nameplace + '/' pathsave = pathsave + 'CNNkernel' + str(int(CNNkernel[0])) + '/' pathsave = pathsave + 'sizeKernel' + str(int(sizekernelCNN)) + '/' pathsave = pathsave + 'strides' + str(int(stridesCNN)) + '/' pathsave = pathsave + 'Densenumber' + str(int(len(DenseNeuron))) + '/' pathsave = pathsave + 'Denseneuron' + str(int(DenseNeuron[0])) + '/' if not os.path.exists(pathsave): os.makedirs(pathsave) VAD_tr_GCC1 = [] SLOC_tr_GCC_X = [] from getDatasetSingleChannel import getHSCMADevDataset if hsc: from getDatasetSingleChannel import getHSCMADevDataset getHSCMADevDataset(VAD_tr_GCC1, SLOC_tr_GCC_X, ax, ay, context, numContext, dirAudio2, fi, nameplace, mic_log_mel) if simulatedcheck: from getDatasetSingleChannel import getEVALITADataset getEVALITADataset(VAD_tr_GCC1, SLOC_tr_GCC_X, ax, ay, realcheck, context, numContext, dirAudio2, fi, nameplace, mic_log_mel) if fittizio: from getDatasetSingleChannel import getDLSDataset getDLSDataset(VAD_tr_GCC1, SLOC_tr_GCC_X, ax, ay, numberdir_fittizio, pathdir_fittizio, context, numContext, dirAudio2, fi, nameplace, mic_log_mel) VAD_tr_GCC1 = np.asarray(VAD_tr_GCC1) SLOC_tr_GCC_X = np.asarray(SLOC_tr_GCC_X) indexes = np.random.permutation(VAD_tr_GCC1.shape[0]) VAD_tr_GCC = VAD_tr_GCC1[indexes] print VAD_tr_GCC.shape SLOC_tr_GCC = SLOC_tr_GCC_X[indexes] del indexes, SLOC_tr_GCC_X, VAD_tr_GCC1 from getModel import getModelSingleChannel model = getModelSingleChannel(CNNkernel, sizekernelCNN, DenseNeuron, stridesCNN, fi, context, VAD_tr_GCC, SLOC_tr_GCC, pathsave, nameplace) from constants import * import scipy.io.wavfile as wav import scipy from csp2dgpp import getCSP, organizeGCC import cPickle dev_test_array = ['Dev', 'Test'] dir_dt_array = ['HSCMA_DIRHA_dev', 'HSCMA_DIRHA_test'] dir_real_sim_array = ['real', 'sim'] dirrslower = dir_real_sim_array[1] for dirdt in dev_test_array: print dirdt if dirdt == 'Dev': dirdtupper = dev_test_array[0] dirdt_hs = dir_dt_array[0] devortest = 'dev' else: dirdtupper = dev_test_array[1] dirdt_hs = dir_dt_array[1] devortest = 'test' realorsim = dir_real_sim_array[1] dirrs = real_sim_array[1] lan_array = ['IT', 'GK', 'GE', 'PT'] numberdir_hscma = 10 numberdirtraining_hscma = np.linspace(1, numberdir_hscma, numberdir_hscma) for lan in lan_array: print lan dirAudio = pathdir_hscma + dirdt_hs + '/' + dirrs + '/' + dirdtupper + '/' + lan + '/' for numerocartelle in numberdirtraining_hscma: print 'training number: ' + str(int(numerocartelle)) dira = dirAudio + dirrslower + str( int(numerocartelle)) + dirAudio2 from funzioniSupplementari import getMic AUDIO = getMic(nameplace, dira) del getMic AUDIO16 = [] for i in range(0, mic_log_mel): AUDIO16.append(scipy.signal.decimate(AUDIO[i], 48 / 16)) l = len(AUDIO16[0]) / hopframe if realorsim == 'sim' or (realorsim == 'real' and (nameplace == 'Livingroom' or nameplace == 'Kitchen')): filesource = dirAudio + dirrslower + str( int(numerocartelle) ) + '/' + dirSource2 + '/' + nameplace + formatref from funzioniSupplementari import positionSource POSSOURCE = positionSource(filesource) del positionSource CSPREAL = [] POSTEMP = [] for i in range(len(POSSOURCE)): POSTEMP.append(POSSOURCE[i]) POSSOURCE = np.asarray(POSTEMP) del POSTEMP getCSP(l, lun, N, fi, AUDIO16, window, CSPREAL) CSPREAL = np.asarray(CSPREAL) CSPTEMP = organizeGCC(CSPREAL, fi, kmax, l) del CSPREAL VAD_tr_GCC1 = [] for i in range(l): MatrixInput1 = np.zeros(shape=(len(fi), context, kmax)) n = 0 while n < context: t = 0 if (i - numContext + n < 0) or (i - numContext + n) >= l: t = i else: t = i - numContext + n for j in range(len(fi)): MatrixInput1[j, n] = CSPTEMP[t, j] n = n + 1 VAD_tr_GCC1.append(MatrixInput1) VAD_tr_GCC1 = np.asarray(VAD_tr_GCC1) SLOC_testx = model.predict([VAD_tr_GCC1]) POSSLOC = [] for i in range(len(SLOC_testx)): Px = SLOC_testx[i][0] * float(ax) Py = SLOC_testx[i][1] * float(ay) POSSLOC.append([Px, Py, 1500]) POSSLOC = np.asarray(POSSLOC) s = pathsave + realorsim + '_' + devortest + '_' + lan + '_' + str( int(numerocartelle) ) + '_' + nameplace + '_' + 'oracle' + '_' + 'singlechannel' locfile = s + '.loc' loc = open(locfile, 'w') cPickle.dump(POSSLOC, loc) loc.close() del model
def startSimulationJoint(context, CNNkernel, sizekernelCNN, stridesCNN, DenseNeuron, DropoutLayer, nameplace, dir_training, ax, ay, numContext, dirAudio2, fi, mic_log_mel, hsc, fittizio, simulatedcheck, realcheck, numberdir_fittizio, pathdir_fittizio): pathsave = 'Joint' + dir_training + '/' pathsave = pathsave + 'context' + str(context) + '/' pathsave = pathsave + nameplace + '/' pathsave = pathsave + 'CNNkernel' + str(int(CNNkernel[0])) + '/' pathsave = pathsave + 'sizeKernel' + str(int(sizekernelCNN)) + '/' pathsave = pathsave + 'strides' + str(int(stridesCNN)) + '/' pathsave = pathsave + 'Densenumber' + str(int(len(DenseNeuron))) + '/' pathsave = pathsave + 'Denseneuron' + str(int(DenseNeuron[0])) + '/' pathsave = pathsave + 'Dropout' + str(int(len(DropoutLayer))) + '/' if not os.path.exists(pathsave): os.makedirs(pathsave) VAD_tr_GCC1 = [] SLOC_tr_GCC_X = [] VAD_tr_LOG1 = [] SLOC_tr_LOG_X = [] from getDatasetJoint import getHSCMADevDataset if hsc: from getDatasetJoint import getHSCMADevDataset getHSCMADevDataset(VAD_tr_LOG1, VAD_tr_GCC1, SLOC_tr_LOG_X, SLOC_tr_GCC_X, ax, ay, context, numContext, dirAudio2, fi, nameplace, mic_log_mel) if simulatedcheck: from getDatasetJoint import getEVALITADataset getEVALITADataset(VAD_tr_LOG1, VAD_tr_GCC1, SLOC_tr_LOG_X, SLOC_tr_GCC_X, ax, ay, realcheck, context, numContext, dirAudio2, fi, nameplace, mic_log_mel) if fittizio: from getDatasetJoint import getDLSDataset getDLSDataset(VAD_tr_LOG1, VAD_tr_GCC1, SLOC_tr_LOG_X, SLOC_tr_GCC_X, ax, ay, numberdir_fittizio, pathdir_fittizio, context, numContext, dirAudio2, fi, nameplace, mic_log_mel) VAD_tr_GCC1 = np.asarray(VAD_tr_GCC1) SLOC_tr_GCC_X = np.asarray(SLOC_tr_GCC_X) VAD_tr_LOG1 = np.asarray(VAD_tr_LOG1) SLOC_tr_LOG_X = np.asarray(SLOC_tr_LOG_X) indexes = np.random.permutation(VAD_tr_GCC1.shape[0]) VAD_tr_GCC = VAD_tr_GCC1[indexes] del VAD_tr_GCC1 print VAD_tr_GCC.shape SLOC_tr_GCC = SLOC_tr_GCC_X[indexes] del SLOC_tr_GCC_X VAD_tr_LOG = VAD_tr_LOG1[indexes] del VAD_tr_LOG1 SLOC_tr_LOG = SLOC_tr_LOG_X[indexes] del SLOC_tr_LOG_X, indexes from getModel import getModelJoint model = getModelJoint(CNNkernel, sizekernelCNN, DenseNeuron, DropoutLayer, stridesCNN, fi, context, mic_log_mel, VAD_tr_LOG, VAD_tr_GCC, SLOC_tr_LOG, SLOC_tr_GCC, pathsave, nameplace) from constants import * import scipy.io.wavfile as wav import scipy from csp2dgpp import getCSP, organizeGCC import cPickle from python_speech_features import logfbank import sklearn from sklearn import mixture dev_test_array = ['Dev', 'Test'] dir_dt_array = ['HSCMA_DIRHA_dev', 'HSCMA_DIRHA_test'] dirrslower = dir_real_sim_array[1] for dirdt in dev_test_array: print dirdt if dirdt == 'Dev': dirdtupper = dev_test_array[0] dirdt_hs = dir_dt_array[0] devortest = 'dev' else: dirdtupper = dev_test_array[1] dirdt_hs = dir_dt_array[1] devortest = 'test' realorsim = dir_real_sim_array[1] dirrs = real_sim_array[1] lan_array = ['IT', 'GK', 'GE', 'PT'] numberdir_hscma = 10 numberdirtraining_hscma = np.linspace(1, numberdir_hscma, numberdir_hscma) for lan in lan_array: print lan dirAudio = pathdir_hscma + dirdt_hs + '/' + dirrs + '/' + dirdtupper + '/' + lan + '/' for numerocartelle in numberdirtraining_hscma: print 'testing number: ' + str(int(numerocartelle)) dira = dirAudio + dirrslower + str( int(numerocartelle)) + dirAudio2 from funzioniSupplementari import getMic AUDIO = getMic(nameplace, dira) del getMic AUDIO16 = [] for i in range(0, mic_log_mel): AUDIO16.append(scipy.signal.decimate(AUDIO[i], 48 / 16)) l = len(AUDIO16[0]) / hopframe if realorsim == 'sim' or (realorsim == 'real' and (nameplace == 'Livingroom' or nameplace == 'Kitchen')): filesource = dirAudio + dirrslower + str( int(numerocartelle) ) + '/' + dirSource2 + '/' + nameplace + formatref from funzioniSupplementari import positionSource POSSOURCE = positionSource(filesource) del positionSource CSPREAL = [] POSTEMP = [] for i in range(len(POSSOURCE)): POSTEMP.append(POSSOURCE[i]) POSSOURCE = np.asarray(POSTEMP) del POSTEMP getCSP(l, lun, N, fi, AUDIO16, window, CSPREAL) CSPREAL = np.asarray(CSPREAL) CSPTEMP = organizeGCC(CSPREAL, fi, kmax, l) del CSPREAL LOGMEL = [] for i in range(0, mic_log_mel): vector = logfbank(AUDIO16[i], rate, nfilt=numfilter, winlen=(float(lenframe) / float(rate)), winstep=(float(hopframe) / float(rate)), nfft=lenframe) vector = sklearn.preprocessing.normalize(vector) LOGMEL.append(vector) VAD_tr_LOG1 = [] VAD_tr_GCC1 = [] for i in range(l): MatrixInputLOG = np.zeros(shape=(mic_log_mel, context, numfilter)) MatrixInputGCC = np.zeros(shape=(len(fi), context, kmax)) n = 0 while n < context: t = 0 if (i - numContext + n < 0) or (i - numContext + n) >= l: t = i else: t = i - numContext + n for j in range(mic_log_mel): MatrixInputLOG[j, n] = LOGMEL[j][t] for j in range(len(fi)): MatrixInputGCC[j, n] = CSPTEMP[t, j] n = n + 1 VAD_tr_LOG1.append(MatrixInputLOG) VAD_tr_GCC1.append(MatrixInputGCC) VAD_tr_GCC1 = np.asarray(VAD_tr_GCC1) VAD_tr_LOG1 = np.asarray(VAD_tr_LOG1) [VAD_output, SLOC_OUTPUT] = model.predict([VAD_tr_LOG1, VAD_tr_GCC1]) POSSLOC = [] for i in range(len(SLOC_OUTPUT)): Px = SLOC_OUTPUT[i][0] Py = SLOC_OUTPUT[i][1] POSSLOC.append([Px, Py, 1500]) POSSLOC = np.asarray(POSSLOC) VAD_output = np.asarray(VAD_output) VAD_output = VAD_output[:, 1] s = pathsave + realorsim + '_' + devortest + '_' + lan + '_' + str( int(numerocartelle) ) + '_' + nameplace + '_' + 'oracle' + '_' + 'slocjoint' locfile = s + '.loc' loc = open(locfile, 'w') cPickle.dump(POSSLOC, loc) loc.close() s = pathsave + realorsim + '_' + devortest + '_' + lan + '_' + str( int(numerocartelle)) + '_' + nameplace + '_' + 'vadjoint' vadfile = s + '.spk' vad = open(vadfile, 'w') cPickle.dump(VAD_output, vad) vad.close() del model
def getEVALITADataset(VAD_tr_GCC1, SLOC_tr_GCC_X, ax, ay, realcheck, context, numContext, dirAudio2, fi, nameplace, mic_log_mel): for realorsim in dir_real_sim_array: if (realorsim == 'real' and realcheck == True) or realorsim == 'sim': print realorsim dirrslower = realorsim if realorsim == 'real': dirrs = real_sim_array[0] numberdir = 22 numberdirtraining = np.linspace(1, numberdir, numberdir) elif realorsim == 'sim': dirrs = real_sim_array[1] numberdir = 80 numberdirtraining = np.linspace(1, numberdir, numberdir) for numerocartelle in numberdirtraining: #for numerocartelle in range(1,5): print 'training folder number: ' + str(numerocartelle) dira = pathdir + dirrs + '/' + dirrslower + str( int(numerocartelle)) + dirAudio2 from funzioniSupplementari import getMic AUDIO = getMic(nameplace, dira) del getMic AUDIO16 = [] for i in range(0, mic_log_mel): AUDIO16.append(scipy.signal.decimate(AUDIO[i], 48 / 16)) l = len(AUDIO16[0]) / hopframe if realorsim == 'sim' or (realorsim == 'real' and (nameplace == 'Livingroom' or nameplace == 'Kitchen')): filesource = pathdir + dirrs + '/' + dirrslower + str( int(numerocartelle) ) + '/' + dirSource2 + '/' + nameplace + formatref from funzioniSupplementari import positionSource POSSOURCE = positionSource(filesource) del positionSource CSPREAL = [] POSTEMP = [] for i in range(len(POSSOURCE)): POSTEMP.append(POSSOURCE[i]) POSSOURCE = np.asarray(POSTEMP) del POSTEMP getCSP(l, lun, N, fi, AUDIO16, window, CSPREAL) CSPREAL = np.asarray(CSPREAL) CSPTEMP = organizeGCC(CSPREAL, fi, kmax, l) del CSPREAL for i in range(l): if POSSOURCE[i][0] != 0 or POSSOURCE[i][ 1] != 0 or POSSOURCE[i][2] != 0: MatrixInput1 = np.zeros(shape=(len(fi), context, kmax)) n = 0 while n < context: t = 0 if (i - numContext + n < 0) or (i - numContext + n) >= l: t = i else: t = i - numContext + n for j in range(len(fi)): MatrixInput1[j, n] = CSPTEMP[t, j] n = n + 1 for j in range(len(fi)): VAD_tr_GCC1[j].append(MatrixInput1[j]) SLOC_tr_GCC_X.append([ float(POSSOURCE[i][0]) / ax, float(POSSOURCE[i][1]) / ay ])
def getHSCMADevDataset(VAD_tr_GCC1, SLOC_tr_GCC_X, ax, ay, context, numContext, dirAudio2, fi, nameplace, mic_log_mel): dev_test_array = ['Dev'] dir_dt_array = ['HSCMA_DIRHA_dev', 'HSCMA_DIRHA_test'] dirrslower = dir_real_sim_array[1] for dirdt in dev_test_array: print dirdt if dirdt == 'Dev': dirdtupper = dev_test_array[0] dirdt_hs = dir_dt_array[0] else: dirdtupper = dev_test_array[1] dirdt_hs = dir_dt_array[1] realorsim = dir_real_sim_array[1] dirrs = real_sim_array[1] lan_array = ['IT', 'GK', 'GE', 'PT'] numberdir_hscma = 10 numberdirtraining_hscma = np.linspace(1, numberdir_hscma, numberdir_hscma) for lan in lan_array: print lan dirAudio = pathdir_hscma + dirdt_hs + '/' + dirrs + '/' + dirdtupper + '/' + lan + '/' for numerocartelle in numberdirtraining_hscma: print 'training number: ' + str(int(numerocartelle)) dira = dirAudio + dirrslower + str( int(numerocartelle)) + dirAudio2 from funzioniSupplementari import getMic AUDIO = getMic(nameplace, dira) del getMic AUDIO16 = [] for i in range(0, mic_log_mel): AUDIO16.append(scipy.signal.decimate(AUDIO[i], 48 / 16)) l = len(AUDIO16[0]) / hopframe if realorsim == 'sim' or (realorsim == 'real' and (nameplace == 'Livingroom' or nameplace == 'Kitchen')): filesource = dirAudio + dirrslower + str( int(numerocartelle) ) + '/' + dirSource2 + '/' + nameplace + formatref from funzioniSupplementari import positionSource POSSOURCE = positionSource(filesource) del positionSource CSPREAL = [] POSTEMP = [] for i in range(len(POSSOURCE)): POSTEMP.append(POSSOURCE[i]) POSSOURCE = np.asarray(POSTEMP) del POSTEMP getCSP(l, lun, N, fi, AUDIO16, window, CSPREAL) CSPREAL = np.asarray(CSPREAL) CSPTEMP = organizeGCC(CSPREAL, fi, kmax, l) del CSPREAL for i in range(l): if POSSOURCE[i][0] != 0 or POSSOURCE[i][ 1] != 0 or POSSOURCE[i][2] != 0: MatrixInput1 = np.zeros(shape=(len(fi), context, kmax)) n = 0 while n < context: t = 0 if (i - numContext + n < 0) or (i - numContext + n) >= l: t = i else: t = i - numContext + n for j in range(len(fi)): MatrixInput1[j, n] = CSPTEMP[t, j] n = n + 1 for j in range(len(fi)): VAD_tr_GCC1[j].append(MatrixInput1[j]) SLOC_tr_GCC_X.append([ float(POSSOURCE[i][0]) / ax, float(POSSOURCE[i][1]) / ay ])
def getEVALITADataset(VAD_tr_LOG1,VAD_tr_GCC1,SLOC_tr_LOG_X,SLOC_tr_GCC_X,ax,ay,realcheck,context,numContext,dirAudio2,fi,nameplace,mic_log_mel): for realorsim in dir_real_sim_array: if (realorsim=='real' and realcheck==True) or realorsim=='sim': print realorsim dirrslower=realorsim if realorsim=='real': dirrs=real_sim_array[0] numberdir=22 numbertraining=numberdir numberdirtraining=np.linspace(1,numberdir,numberdir) elif realorsim=='sim': dirrs=real_sim_array[1] numberdir=80 numberdirtraining=np.linspace(1,numberdir,numberdir) for numerocartelle in numberdirtraining: #for numerocartelle in range(1,15): print 'training folder number: '+str(numerocartelle) dira=pathdir+dirrs+'/'+dirrslower+str(int(numerocartelle))+dirAudio2 from funzioniSupplementari import getMic AUDIO=getMic(nameplace,dira) del getMic AUDIO16=[] for i in range(0,mic_log_mel): AUDIO16.append(scipy.signal.decimate(AUDIO[i],48/16)) l=len(AUDIO16[0])/hopframe if realorsim=='sim' or (realorsim=='real' and (nameplace=='Livingroom' or nameplace=='Kitchen')): filesource=pathdir+dirrs+'/'+dirrslower+str(int(numerocartelle))+'/'+dirSource2+'/'+nameplace+formatref from funzioniSupplementari import positionSource POSSOURCE=positionSource(filesource) del positionSource CSPREAL=[] POSTEMP=[] for i in range(len(POSSOURCE)): POSTEMP.append(POSSOURCE[i]) POSSOURCE=np.asarray(POSTEMP) del POSTEMP getCSP(l,lun,N,fi,AUDIO16,window,CSPREAL) CSPREAL=np.asarray(CSPREAL) CSPTEMP=organizeGCC(CSPREAL,fi,kmax,l) del CSPREAL LOGMEL=[] for i in range(0,mic_log_mel): vector=logfbank(AUDIO16[i],rate,nfilt=numfilter,winlen=(float(lenframe)/float(rate)),winstep=(float(hopframe)/float(rate)),nfft=lenframe) vector=sklearn.preprocessing.normalize(vector) LOGMEL.append(vector) for i in range(l): MatrixInputLOG=np.zeros(shape=(mic_log_mel,context,numfilter)) MatrixInputGCC=np.zeros(shape=(len(fi),context,kmax)) n=0 while n<context: t=0 if (i-numContext+n<0) or (i-numContext+n)>=l: t=i else: t=i-numContext+n for j in range(mic_log_mel): MatrixInputLOG[j,n]=LOGMEL[j][t] for j in range(len(fi)): MatrixInputGCC[j,n]=CSPTEMP[t,j] n=n+1 VAD_tr_LOG1.append(MatrixInputLOG) VAD_tr_GCC1.append(MatrixInputGCC) if POSSOURCE[i][0]!=0 or POSSOURCE[i][1]!=0 or POSSOURCE[i][2]!=0: SLOC_tr_GCC_X.append([float(POSSOURCE[i][0])/ax,float(POSSOURCE[i][1])/ay]) SLOC_tr_LOG_X.append([0,1]) else: SLOC_tr_LOG_X.append([1,0]) SLOC_tr_GCC_X.append([-1,-1])