Exemple #1
0
def run():
    fruits = CData(gyumpath, gyumindeps, feature=TAXLEVEL, cross_val=CROSSVAL)
    fruits.transformation = (TRANSFORMATION, TRANSFORMATION_PARAM)

    network = build_net(*fruits.neurons_required)

    testing = fruits.table("testing")
    zsind = CData(zsindpath, zsindeps, cross_val=0.0, feature=TAXLEVEL)
    vx, vy = zsind.learning, zsind.lindeps
    vx = fruits.transformation(vx)
    vy = fruits.embed(vy)

    initc, initacc = network.evaluate(*testing, verbose=0)
    initc, initacc = round(initc, 5), round(initacc, 5)
    print("Initial cost: {}\tacc: {}".format(initc, initacc))

    X, y = fruits.table("learning")
    network.fit(X,
                y,
                batch_size=20,
                nb_epoch=400,
                validation_data=testing,
                verbose=0)
    tacc = network.evaluate(*testing, batch_size=fruits.n_testing,
                            verbose=0)[-1]
    vacc = network.evaluate(vx, vy, verbose=0)[-1]
    # batchgen = fruits.batchgen(100, infinite=True)
    # log = network.fit_generator(batchgen, fruits.N, nb_epoch=15, validation_data=valid, verbose=verbose)
    print("T: {}\tV: {}".format(tacc, vacc))
    return tacc, vacc
Exemple #2
0
def full_training(validate=True, dump_weights=False):
    fruits = CData(gyumpath, gyumindeps, feature=TAXLEVEL, cross_val=0.0)
    fruits.transformation = (TRANSFORMATION, TRANSFORMATION_PARAM)

    network = build_net(*fruits.neurons_required)

    X, y = fruits.table("learning")
    network.fit(X, y, batch_size=30, nb_epoch=500, verbose=0)

    if dump_weights:
        weights = network.layers[0].get_weights()

        wghts = open("weights.csv", "w")
        wghts.write("\n".join([
            "\t".join([str(float(cell)) for cell in line])
            for line in weights[0].T
        ]).replace(".", ","))
        wghts.close()

    if validate:
        vx, vy = CData(zsindpath, zsindeps, cross_val=0.0, feature=TAXLEVEL)
        vx = fruits.transformation(vx)
        vy = fruits.embed(vy)
        vacc = network.evaluate(vx, vy, batch_size=len(vy), verbose=0)[-1]
        probs = network.predict_proba(vx, verbose=0)
        preds = network.predict_classes(vx, verbose=0)
        print("ANN validation accuracy:", vacc)
        return probs, preds, vy, fruits
Exemple #3
0
 def get_data():
     fruits = CData(gyumpath,
                    gyumindeps,
                    feature=TAXLEVEL,
                    cross_val=CROSSVAL)
     fruits.transformation = (AFTER_TREATMENT, TRANSFORM_PARAM)
     zsind = CData(zsindpath,
                   zsindeps,
                   feature=TAXLEVEL,
                   cross_val=0,
                   transformation=None,
                   param=None)
     lX, lY = fruits.learning, fruits.lindeps
     tX, tY = fruits.testing, fruits.tindeps
     vX, vY = zsind.learning, zsind.lindeps
     vX = fruits.transformation(vX)
     return lX, lY, tX, tY, vX, vY
Exemple #4
0
def pull_data(crossval):
    from csxdata import CData, roots
    from csxdata.utilities.parser import parse_csv

    table = parse_csv(roots["csvs"] + "sum_ntab.csv", indeps=7)
    data, labels, headers = table
    labels = labels[..., -1].astype("float32")

    data = CData((data[..., -11:], labels), cross_val=crossval)
    data.transformation = "std"
    return data
def experiment(mode):
    mode = mode.lower()[0]
    if mode.lower()[0] == "c":
        chain = "Convolutional"
    elif mode.lower()[0] == "f":
        chain = "Fully Connected"
    else:
        raise RuntimeError("Wrong mode definition!")

    print("Experiment: MNIST classification with {} Neural Network!".format(chain))
    net = get_fcnn() if mode == "f" else get_cnn()
    mnist = CData(mnist_to_lt(miscpath, (True if mode == "c" else False)))
    mnist.transformation = "standardization"

    net.fit(mnist.data, mnist.indeps, batch_size=20, nb_epoch=30, verbose=1,
            validation_split=0.2, show_accuracy=True)
Exemple #6
0
def get_frame(pretreat="std", param=0):
    path, indps = paths["grapes"]
    frame = CData(path, indps, headers=1, feature="borregio", lower=True)
    frame.transformation = (pretreat, param)
    return frame
Exemple #7
0
    ae.fit(grapes.testing, grapes.testing, epochs=300, verbose=0)
    ae.prediction(grapes.learning)
    eX = ae.layers[2].output

    trGrapes = CData((eX, grapes.lindeps), headers=None)

    full_run(trGrapes)


def neural_switcharoo(grapes):
    model = Network(input_shape=grapes.neurons_required[0], name="GrapesNet")
    model.add(DenseLayer(60, activation="tanh"))
    model.add(DenseLayer(grapes.neurons_required[1], activation="sigmoid"))
    model.finalize(cost="xent", optimizer="adam")
    model.describe(1)

    model.fit(*grapes.table("testing"), epochs=300, monitor=["acc"], verbose=0)

    model.prediction(grapes.learning)
    trX = model.layers[-2].output

    trGrapes = CData((trX, grapes.lindeps), headers=None)

    full_run(trGrapes)


if __name__ == '__main__':
    dframe = CData(path, indepsn, headers=1, feature="borregio", lower=True)
    dframe.transformation = "std"
    autoencoder(dframe)
Exemple #8
0
# from sklearn.ensemble import AdaBoostClassifier as Boost
from sklearn.ensemble.bagging import BaggingClassifier as Boost
from sklearn.naive_bayes import GaussianNB

from csxdata import CData

from SciProjects.grapes import path, indepsn

if __name__ == '__main__':

    data = CData(path,
                 indepsn,
                 feature="evjarat",
                 headers=1,
                 cross_val=0.2,
                 lower=True)
    data.transformation = "std"
    model = Boost(GaussianNB(), n_estimators=100)

    model.fit(data.learning, data.lindeps)
    preds = model.predict(data.testing)
    eq = [left == right for left, right in zip(preds, data.tindeps)]
    print("Acc:", sum(eq) / len(eq))
Exemple #9
0
def pull_mnist_data():
    mnist = CData(roots["misc"] + "mnist.pkl.gz", cross_val=0.18)
    mnist.transformation = "std"
    return mnist
Exemple #10
0
from sklearn.ensemble import RandomForestClassifier as RF

from csxdata import CData

from SciProjects.fruits import *

LABEL = "Familia"
rf = RF(n_estimators=100, n_jobs=1)

fruits = CData(gyumpath, gyumindeps, cross_val=0.2, feature=LABEL)
fruits.transformation = ("lda", 5)

zsind = CData(zsindpath, zsindeps, cross_val=0.0)
valid = fruits.transformation(zsind.learning, zsind.lindeps)
rf.fit(fruits.learning, fruits.lindeps)

tpredict = rf.predict(fruits.testing)
vpredict = rf.predict(valid[0])
tacc = [right == left for right, left in zip(tpredict, fruits.tindeps)]
vacc = [right == left for right, left in zip(vpredict, valid[1])]
print("TPredictions ({}%):\n{}".format(int(100 * sum(tacc) / len(tacc)),
                                       tpredict))
print("TestingY:\n", fruits.tindeps)
print("VPredictions ({}%):\n{}".format(int(100 * sum(vacc) / len(vacc)),
                                       vpredict))
print("ValidY:\n", valid[1])
Exemple #11
0
def get_frame(transf, params):
    path, indepsn = paths["grapes"]
    grapes = CData(path, indepsn, headers=1, feature=FEATURE, lower=True)
    grapes.transformation = (transf, params)
    return grapes