Exemple #1
0
        def update(frame):

            centroid = np.random.uniform(-0.5, 0.5, size=2)
            width = np.random.uniform(0, 0.01)
            length = np.random.uniform(0, 0.03) + width
            angle = np.random.uniform(0, 360)
            intens = np.random.exponential(2) * 50
            model = toymodel.generate_2d_shower_model(centroid=centroid,
                                                      width=width,
                                                      length=length,
                                                      psi=angle * u.deg)
            image, sig, bg = toymodel.make_toymodel_shower_image(geom, model.pdf,
                                                                 intensity=intens,
                                                                 nsb_level_pe=5000)

            # alternate between cleaned and raw images
            if self._counter > 20:
                plt.suptitle("Image Cleaning ON")
                cleanmask = cleaning.tailcuts_clean(geom, image, pedvars=80)
                for ii in range(3):
                    cleaning.dilate(geom, cleanmask)
                image[cleanmask == 0] = 0  # zero noise pixels
            if self._counter >= 40:
                plt.suptitle("Image Cleaning OFF")
                self._counter = 0

            disp.image = image
            disp.set_limits_percent(100)
            self._counter += 1
Exemple #2
0
def test_dilate():
    geom = CameraGeometry.from_name("LSTCam")
    mask = np.zeros_like(geom.pix_id, dtype=bool)

    mask[100] = True  # a single pixel far from a border is true.
    assert mask.sum() == 1

    # dilate a single row
    dmask = cleaning.dilate(geom, mask)
    assert dmask.sum() == 1 + 6

    # dilate a second row
    dmask = cleaning.dilate(geom, dmask)
    assert dmask.sum() == 1 + 6 + 12

    # dilate a third row
    dmask = cleaning.dilate(geom, dmask)
    assert dmask.sum() == 1 + 6 + 12 + 18
    def clean_tail(self, img, cam_geom):
        mask = tailcuts_clean(
            cam_geom, img,
            picture_thresh=self.tail_thresholds[cam_geom.cam_id][1],
            boundary_thresh=self.tail_thresholds[cam_geom.cam_id][0])
        if self.dilate:
            dilate(cam_geom, mask)
        img[~mask] = 0

        self.cutflow.count("tailcut cleaning")

        if "ASTRI" in cam_geom.cam_id:
            # turn into 2d to apply island cleaning
            img = astri_to_2d_array(img)

            # if set, remove all signal patches but the biggest one
            new_img = self.island_cleaning(img)

            # turn back into 1d array
            new_img = array_2d_to_astri(new_img)
            new_geom = cam_geom

        else:
            # turn into 2d to apply island cleaning
            rot_geom, rot_img = convert_geometry_hex1d_to_rect2d(
                cam_geom, img, cam_geom.cam_id)

            # if set, remove all signal patches but the biggest one
            cleaned_img = self.island_cleaning(rot_img, self.hex_neighbours_1ring)

            # turn back into 1d array
            unrot_geom, unrot_img = convert_geometry_rect2d_back_to_hexe1d(
                rot_geom, cleaned_img, cam_geom.cam_id)

            new_img = unrot_img
            new_geom = unrot_geom

        if self.cutflow.cut("edge event",
                            img=new_img, geom=new_geom):
            raise EdgeEvent

        return new_img, new_geom
Exemple #4
0
def test_dilate():

    geom = io.CameraGeometry.from_name("HESS", 1)
    mask = np.zeros_like(geom.pix_id, dtype=bool)

    mask[100] = True  # a single pixel far from a border is true.
    assert mask.sum() == 1

    # dilate a single row
    cleaning.dilate(geom, mask)
    assert mask.sum() == 1 + 6

    # dilate a second row
    cleaning.dilate(geom, mask)
    assert mask.sum() == 1 + 6 + 12

    # dilate a third row
    cleaning.dilate(geom, mask)
    assert mask.sum() == 1 + 6 + 12 + 18
Exemple #5
0
def display_event(event, calibrate = 0, max_tel = 4, cleaning=None):
    """an extremely inefficient display. It creates new instances of
    CameraDisplay for every event and every camera, and also new axes
    for each event. It's hacked, but it works
    """
    print("Displaying... please wait (this is an inefficient implementation)")
    global fig
    ntels = min(max_tel, len(event.dl0.tels_with_data))
    fig.clear()

    plt.suptitle("EVENT {}".format(event.dl0.event_id))

    disps = []

    mc_sum = None
    all_moments = []

    for ii, tel_id in enumerate(event.dl0.tels_with_data):
        if ii >= max_tel: break
        print("\t draw cam {}...".format(tel_id))
        nn = int(ceil((ntels)**.5))
        ax = plt.subplot(nn, 2*nn, 2*(ii+1)-1)

        x, y = event.inst.pixel_pos[tel_id]
        geom = io.CameraGeometry.guess(x, y, event.inst.optical_foclen[tel_id])
        disp = visualization.CameraDisplay(geom, ax=ax,
                                           title="CT{0} DetectorResponse".format(tel_id))

        disp.pixels.set_antialiaseds(False)
        disp.autoupdate = False
        disp.cmap = plt.cm.hot
        chan = 0
        signals = event.dl0.tel[tel_id].adc_sums[chan].astype(float)[:]
        if calibrate:
            signals = apply_mc_calibration_ASTRI(event.dl0.tel[tel_id].adc_sums, tel_id)
        if cleaning == 'tailcut':
            mask = tailcuts_clean(geom, signals, 1,picture_thresh=10.,boundary_thresh=8.)
            dilate(geom, mask)
            signals[mask==False] = 0

        moments = hillas_parameters_2(geom.pix_x,
                                      geom.pix_y,
                                      signals)

        disp.image = signals
        disp.overlay_moments(moments, color='seagreen', linewidth=3)
        disp.set_limits_percent(95)
        disp.add_colorbar()
        disps.append(disp)


        ax = plt.subplot(nn, 2*nn, 2*(ii+1))

        geom = io.CameraGeometry.guess(x, y, event.inst.optical_foclen[tel_id])
        disp = visualization.CameraDisplay(geom, ax=ax,
                                           title="CT{0} PhotoElectrons".format(tel_id))
        disp.pixels.set_antialiaseds(False)
        disp.autoupdate = False
        disp.cmap = plt.cm.hot
        chan = 0


        #print (event.mc.tel[tel_id].photo_electrons)
        for jj in range(len(event.mc.tel[tel_id].photo_electron_image)):
            event.dl0.tel[tel_id].adc_sums[chan][jj] = event.mc.tel[tel_id].photo_electron_image[jj]
        signals2 = event.dl0.tel[tel_id].adc_sums[chan].astype(float)
        moments2 = hillas_parameters_2(geom.pix_x,
                                       geom.pix_y,
                                       signals2)
        all_moments.append(moments2)
        if mc_sum is None:
            mc_sum = signals2
        else:
            scale = 3 if tel_id == 37 else 1
            for i, val in enumerate(signals2):
                mc_sum[i] += val/scale

        disp.image = mc_sum
        for moments2 in all_moments:
            disp.overlay_moments(moments2, color='seagreen', linewidth=2)
        disp.set_limits_percent(95)
        disp.add_colorbar()
        disps.append(disp)


    return disps