Exemple #1
0
def test_convert_geometry(cam_id, rot):

    geom = CameraGeometry.from_name(cam_id)

    if geom.pix_type == 'rectangular':
        return  # skip non-hexagonal cameras, since they don't need conversion

    model = generate_2d_shower_model(centroid=(0.4, 0), width=0.01, length=0.03,
                                     psi="25d")

    _, image, _ = make_toymodel_shower_image(geom, model.pdf,
                                             intensity=50,
                                             nsb_level_pe=100)

    hillas_0 = hillas_parameters(geom.pix_x, geom.pix_y, image)

    geom2d, image2d = convert_geometry_1d_to_2d(geom, image,
                                                geom.cam_id + str(rot),
                                                add_rot=rot)
    geom1d, image1d = convert_geometry_back(geom2d, image2d,
                                            geom.cam_id + str(rot),
                                            add_rot=rot)

    hillas_1 = hillas_parameters(geom1d.pix_x, geom1d.pix_y, image1d)

    if __name__ == "__main__":
        plot_cam(geom, geom2d, geom1d, image, image2d, image1d)
        plt.tight_layout()
        plt.pause(.1)

    assert np.abs(hillas_1.phi - hillas_0.phi).deg < 1.0
def test_convert_geometry(cam_id, rot):

    geom = CameraGeometry.from_name(cam_id)

    if geom.pix_type=='rectangular':
        return  # skip non-hexagonal cameras, since they don't need conversion

    model = generate_2d_shower_model(centroid=(0.4, 0), width=0.01, length=0.03,
                                     psi="25d")

    _,image,_ = make_toymodel_shower_image(geom, model.pdf,
                                           intensity=50,
                                           nsb_level_pe=100)

    hillas_0 = hillas_parameters(geom.pix_x, geom.pix_y, image)

    geom2d, image2d = convert_geometry_1d_to_2d(geom, image,
                                                 geom.cam_id+str(rot),
                                                 add_rot=-2)
    geom1d, image1d = convert_geometry_back(geom2d, image2d,
                                            geom.cam_id+str(rot),
                                            add_rot=rot)
    hillas_1 = hillas_parameters(geom1d.pix_x, geom1d.pix_y, image1d)

    if __name__ == "__main__":
        plot_cam(geom, geom2d, geom1d, image, image2d, image1d)

    assert np.abs(hillas_1.phi - hillas_0.phi).deg < 1.0
def test_convert_geometry_mock(cam_id, rot):
    """here we use a different key for the back conversion to trigger the mock conversion
    """

    geom = CameraGeometry.from_name(cam_id)
    image = create_mock_image(geom)
    hillas_0 = hillas_parameters(geom, image)

    if geom.pix_type == 'hexagonal':
        convert_geometry_1d_to_2d = convert_geometry_hex1d_to_rect2d
        convert_geometry_back = convert_geometry_rect2d_back_to_hexe1d

        geom2d, image2d = convert_geometry_1d_to_2d(geom, image, key=None,
                                                    add_rot=rot)
        geom1d, image1d = convert_geometry_back(geom2d, image2d,
                                                "_".join([geom.cam_id,
                                                          str(rot), "mock"]),
                                                add_rot=rot)
    else:
        # originally rectangular geometries don't need a buffer and therefore no mock
        # conversion
        return

    hillas_1 = hillas_parameters(geom, image1d)
    assert np.abs(hillas_1.phi - hillas_0.phi).deg < 1.0
Exemple #4
0
def test_convert_geometry_mock(cam_id, rot):
    """here we use a different key for the back conversion to trigger the mock conversion
    """

    geom = CameraGeometry.from_name(cam_id)
    image = create_mock_image(geom)
    hillas_0 = hillas_parameters(geom, image)

    if geom.pix_type == "hexagonal":
        convert_geometry_1d_to_2d = convert_geometry_hex1d_to_rect2d
        convert_geometry_back = convert_geometry_rect2d_back_to_hexe1d

        geom2d, image2d = convert_geometry_1d_to_2d(geom,
                                                    image,
                                                    key=None,
                                                    add_rot=rot)
        geom1d, image1d = convert_geometry_back(
            geom2d,
            image2d,
            "_".join([geom.cam_id, str(rot), "mock"]),
            add_rot=rot)
    else:
        # originally rectangular geometries don't need a buffer and therefore no mock
        # conversion
        return

    hillas_1 = hillas_parameters(geom, image1d)
    assert np.abs(hillas_1.phi - hillas_0.phi).deg < 1.0
Exemple #5
0
def test_hillas_container():
    geom, image = create_sample_image_zeros(psi="0d")

    params = hillas_parameters(geom, image)
    assert isinstance(params, CameraHillasParametersContainer)

    geom.frame = CameraFrame(focal_length=28 * u.m)
    geom_telescope_frame = geom.transform_to(TelescopeFrame())
    params = hillas_parameters(geom_telescope_frame, image)
    assert isinstance(params, HillasParametersContainer)
Exemple #6
0
def test_hillas_masked_array():
    geom, image, clean_mask = create_sample_image(psi='0d')

    image_zeros = image.copy()
    image_zeros[~clean_mask] = 0
    hillas_zeros = hillas_parameters(geom, image_zeros)

    image_masked = np.ma.masked_array(image, mask=~clean_mask)
    hillas_masked = hillas_parameters(geom, image_masked)

    compare_hillas(hillas_zeros, hillas_masked)
Exemple #7
0
def test_hillas_masked_array():
    geom, image, clean_mask = create_sample_image(psi='0d')

    image_zeros = image.copy()
    image_zeros[~clean_mask] = 0
    hillas_zeros = hillas_parameters(geom, image_zeros)

    image_masked = np.ma.masked_array(image, mask=~clean_mask)
    hillas_masked = hillas_parameters(geom, image_masked)

    compare_hillas(hillas_zeros, hillas_masked)
Exemple #8
0
def test_hillas_selected():
    """
    test Hillas-parameter routines on a sample image with selected values
    against a sample image with masked values set tozero
    """
    geom, image = create_sample_image_zeros()
    geom_selected, image_selected = create_sample_image_selected_pixel()

    results = hillas_parameters(geom, image)
    results_selected = hillas_parameters(geom_selected, image_selected)

    compare_hillas(results, results_selected)
Exemple #9
0
def test_hillas_selected():
    """
    test Hillas-parameter routines on a sample image with selected values
    against a sample image with masked values set tozero
    """
    geom, image = create_sample_image_zeros()
    geom_selected, image_selected = create_sample_image_selected_pixel()

    results = hillas_parameters(geom, image)
    results_selected = hillas_parameters(geom_selected, image_selected)

    compare_hillas(results, results_selected)
Exemple #10
0
def test_convert_geometry(cam_id, rot):

    geom = CameraGeometry.from_name(cam_id)

    model = generate_2d_shower_model(centroid=(0.4, 0),
                                     width=0.01,
                                     length=0.03,
                                     psi="25d")

    _, image, _ = make_toymodel_shower_image(geom,
                                             model.pdf,
                                             intensity=50,
                                             nsb_level_pe=100)

    hillas_0 = hillas_parameters(geom, image)

    if geom.pix_type == 'hexagonal':
        convert_geometry_1d_to_2d = convert_geometry_hex1d_to_rect2d
        convert_geometry_back = convert_geometry_rect2d_back_to_hexe1d

        geom2d, image2d = convert_geometry_1d_to_2d(geom,
                                                    image,
                                                    geom.cam_id + str(rot),
                                                    add_rot=rot)
        geom1d, image1d = convert_geometry_back(geom2d,
                                                image2d,
                                                geom.cam_id + str(rot),
                                                add_rot=rot)

    else:
        if geom.cam_id == "ASTRICam":
            convert_geometry_1d_to_2d = astri_to_2d_array
            convert_geometry_back = array_2d_to_astri
        elif geom.cam_id == "CHEC":
            convert_geometry_1d_to_2d = chec_to_2d_array
            convert_geometry_back = array_2d_to_chec
        else:
            print("camera {geom.cam_id} not implemented")
            return

        image2d = convert_geometry_1d_to_2d(image)
        image1d = convert_geometry_back(image2d)

    hillas_1 = hillas_parameters(geom, image1d)

    # if __name__ == "__main__":
    #     plot_cam(geom, geom2d, geom1d, image, image2d, image1d)
    #     plt.tight_layout()
    #     plt.pause(.1)

    assert np.abs(hillas_1.phi - hillas_0.phi).deg < 1.0
Exemple #11
0
def test_array_draw():
    filename = get_dataset("gamma_test.simtel.gz")
    cam_geom = {}

    source = hessio_event_source(filename, max_events=2)
    r1 = HESSIOR1Calibrator()
    dl0 = CameraDL0Reducer()

    calibrator = CameraDL1Calibrator()

    for event in source:
        array_pointing = SkyCoord(
            event.mcheader.run_array_direction[1] * u.rad,
            event.mcheader.run_array_direction[0] * u.rad,
            frame=AltAz)
        # array_view = ArrayPlotter(instrument=event.inst,
        #                          system=TiltedGroundFrame(
        # pointing_direction=array_pointing))

        hillas_dict = {}
        r1.calibrate(event)
        dl0.reduce(event)
        calibrator.calibrate(event)  # calibrate the events

        # store MC pointing direction for the array

        for tel_id in event.dl0.tels_with_data:

            pmt_signal = event.dl1.tel[tel_id].image[0]
            geom = deepcopy(event.inst.subarray.tel[tel_id].camera)
            fl = event.inst.subarray.tel[tel_id].optics.equivalent_focal_length

            # Transform the pixels positions into nominal coordinates
            camera_coord = CameraFrame(x=geom.pix_x,
                                       y=geom.pix_y,
                                       z=np.zeros(geom.pix_x.shape) * u.m,
                                       focal_length=fl,
                                       rotation=90 * u.deg - geom.cam_rotation)
            nom_coord = camera_coord.transform_to(
                NominalFrame(array_direction=array_pointing,
                             pointing_direction=array_pointing))

            geom.pix_x = nom_coord.x
            geom.pix_y = nom_coord.y

            mask = tailcuts_clean(geom,
                                  pmt_signal,
                                  picture_thresh=10.,
                                  boundary_thresh=5.)

            try:
                moments = hillas_parameters(geom, pmt_signal * mask)
                hillas_dict[tel_id] = moments
                nom_coord = NominalPlotter(hillas_parameters=hillas_dict,
                                           draw_axes=True)
                nom_coord.draw_array()

            except HillasParameterizationError as e:
                print(e)
                continue
def test_FitGammaHillas():
    '''
    a test of the complete fit procedure on one event including:
    • tailcut cleaning
    • hillas parametrisation
    • GreatCircle creation
    • direction fit
    • position fit

    in the end, proper units in the output are asserted '''

    filename = get_dataset("gamma_test.simtel.gz")

    fit = HillasReconstructor()

    cam_geom = {}
    tel_phi = {}
    tel_theta = {}

    source = hessio_event_source(filename)

    for event in source:

        hillas_dict = {}
        for tel_id in event.dl0.tels_with_data:

            if tel_id not in cam_geom:
                cam_geom[tel_id] = CameraGeometry.guess(
                                        event.inst.pixel_pos[tel_id][0],
                                        event.inst.pixel_pos[tel_id][1],
                                        event.inst.optical_foclen[tel_id])

                tel_phi[tel_id] = event.mc.tel[tel_id].azimuth_raw * u.rad
                tel_theta[tel_id] = (np.pi/2-event.mc.tel[tel_id].altitude_raw)*u.rad

            pmt_signal = event.r0.tel[tel_id].adc_sums[0]

            mask = tailcuts_clean(cam_geom[tel_id], pmt_signal,
                                  picture_thresh=10., boundary_thresh=5.)
            pmt_signal[mask == 0] = 0

            try:
                moments = hillas_parameters(event.inst.pixel_pos[tel_id][0],
                                            event.inst.pixel_pos[tel_id][1],
                                            pmt_signal)
                hillas_dict[tel_id] = moments
            except HillasParameterizationError as e:
                print(e)
                continue

        if len(hillas_dict) < 2: continue

        fit_result = fit.predict(hillas_dict, event.inst, tel_phi, tel_theta)

        print(fit_result)
        fit_result.alt.to(u.deg)
        fit_result.az.to(u.deg)
        fit_result.core_x.to(u.m)
        assert fit_result.is_valid
        return
Exemple #13
0
def test_straight_line_width_0():
    ''' Test that hillas_parameters.width is 0 for a straight line of pixels '''
    # three pixels in a straight line
    long = np.array([0, 1, 2]) * 0.01
    trans = np.zeros(len(long))
    pix_id = np.arange(len(long))

    np.random.seed(0)

    for dx in (-1, 0, 1):
        for dy in (-1, 0, 1):
            for psi in np.linspace(0, np.pi, 20):
                x = dx + np.cos(psi) * long + np.sin(psi) * trans
                y = dy - np.sin(psi) * long + np.cos(psi) * trans

                geom = CameraGeometry(
                    camera_name='testcam',
                    pix_id=pix_id,
                    pix_x=x * u.m,
                    pix_y=y * u.m,
                    pix_type='hexagonal',
                    pix_area=1 * u.m**2,
                )

                img = np.random.poisson(5, size=len(long))
                result = hillas_parameters(geom, img)
                assert result.width.value == 0
Exemple #14
0
def hillas(event):
    hillas_dict = {}
    tel_phi = {}
    tel_theta = {}
    for tel in event:
        tel_id = tel['tel_id']
        tel_phi[tel_id] = 0. * u.deg
        tel_theta[tel_id] = 20. * u.deg

        pmt_signal = tel['adc_sums'][0]
        # print(pmt_signal)
        inst = broadcastInst.value
        pix_x = inst.pixel_pos[tel_id][0]
        pix_y = inst.pixel_pos[tel_id][1]
        foc = inst.optical_foclen[tel_id]
        cam_geom = CameraGeometry.guess(pix_x, pix_y, foc)
        mask = tailcuts_clean(cam_geom,
                              pmt_signal,
                              1,
                              picture_thresh=10.,
                              boundary_thresh=5.)
        pmt_signal[mask == 0] = 0

        try:
            moments = hillas_parameters(cam_geom.pix_x, cam_geom.pix_y,
                                        pmt_signal)
            hillas_dict[tel['tel_id']] = moments
        except HillasParameterizationError as e:
            print(e)

    return (hillas_dict, tel_phi, tel_theta)
Exemple #15
0
def test_straight_line_width_0():
    """ Test that hillas_parameters.width is 0 for a straight line of pixels """
    # three pixels in a straight line
    long = np.array([0, 1, 2]) * 0.01
    trans = np.zeros(len(long))
    pix_id = np.arange(len(long))

    rng = np.random.default_rng(0)

    for dx in (-1, 0, 1):
        for dy in (-1, 0, 1):
            for psi in np.linspace(0, np.pi, 20):
                x = dx + np.cos(psi) * long + np.sin(psi) * trans
                y = dy - np.sin(psi) * long + np.cos(psi) * trans

                geom = CameraGeometry(
                    camera_name="testcam",
                    pix_id=pix_id,
                    pix_x=x * u.m,
                    pix_y=y * u.m,
                    pix_type="hexagonal",
                    pix_area=1 * u.m**2,
                )

                img = rng.poisson(5, size=len(long))
                result = hillas_parameters(geom, img)
                assert result.width.value == 0
                assert np.isnan(result.width_uncertainty.value)
def draw_several_cams(geom, ncams=4):

    cmaps = ['jet', 'afmhot', 'terrain', 'autumn']
    fig, axs = plt.subplots(1, ncams, figsize=(15, 4), sharey=True, sharex=True)

    for ii in range(ncams):
        disp = visualization.CameraDisplay(
            geom,
            ax=axs[ii],
            title="CT{}".format(ii + 1),
        )
        disp.cmap = cmaps[ii]

        model = toymodel.generate_2d_shower_model(
            centroid=(0.2 - ii * 0.1, -ii * 0.05),
            width=0.005 + 0.001 * ii,
            length=0.1 + 0.05 * ii,
            psi=ii * 20 * u.deg,
        )

        image, sig, bg = toymodel.make_toymodel_shower_image(
            geom,
            model.pdf,
            intensity=50,
            nsb_level_pe=1000,
        )

        clean = image.copy()
        clean[image <= 3.0 * image.mean()] = 0.0
        hillas = hillas_parameters(geom.pix_x, geom.pix_y, clean)

        disp.image = image
        disp.add_colorbar(ax=axs[ii])
        disp.set_limits_percent(95)
        disp.overlay_moments(hillas, linewidth=3, color='blue')
Exemple #17
0
def test_FitGammaHillas():
    '''
    a test of the complete fit procedure on one event including:
    • tailcut cleaning
    • hillas parametrisation
    • GreatCircle creation
    • direction fit
    • position fit

    in the end, proper units in the output are asserted '''

    filename = get_path("gamma_test.simtel.gz")

    fit = FitGammaHillas()

    cam_geom = {}
    tel_phi = {}
    tel_theta = {}

    source = hessio_event_source(filename)

    for event in source:

        hillas_dict = {}
        for tel_id in event.dl0.tels_with_data:

            if tel_id not in cam_geom:
                cam_geom[tel_id] = CameraGeometry.guess(
                                        event.inst.pixel_pos[tel_id][0],
                                        event.inst.pixel_pos[tel_id][1],
                                        event.inst.optical_foclen[tel_id])

                tel_phi[tel_id] = 0.*u.deg
                tel_theta[tel_id] = 20.*u.deg

            pmt_signal = event.dl0.tel[tel_id].adc_sums[0]

            mask = tailcuts_clean(cam_geom[tel_id], pmt_signal, 1,
                                  picture_thresh=10., boundary_thresh=5.)
            pmt_signal[mask == 0] = 0

            try:
                moments = hillas_parameters(event.inst.pixel_pos[tel_id][0],
                                            event.inst.pixel_pos[tel_id][1],
                                            pmt_signal)
                hillas_dict[tel_id] = moments
            except HillasParameterizationError as e:
                print(e)
                continue

        if len(hillas_dict) < 2: continue

        fit_result = fit.predict(hillas_dict, event.inst, tel_phi, tel_theta)

        print(fit_result)
        fit_result.alt.to(u.deg)
        fit_result.az.to(u.deg)
        fit_result.core_x.to(u.m)
        assert fit_result.is_valid
        return
Exemple #18
0
def main():
    paths = [
        "/Volumes/gct-jason/astri_onsky_archive/d2019-05-15_simulations/proton/run1_dl1.h5",
    ]

    df_list = []

    for ipath, path in enumerate(paths):
        with DL1Reader(path) as reader:
            n_events = reader.get_metadata()['n_events']
            mapping = reader.get_mapping()
            geom = get_ctapipe_camera_geometry(mapping, plate_scale=37.56e-3)

            desc = "Looping over events"
            it = reader.iterate_over_events()
            for df in tqdm(it, total=n_events, desc=desc):
                iev = df['iev'].values[0]

                image = df['photons'].values
                time = df['pulse_time'].values

                mask = obtain_cleaning_mask(geom, image, time)
                if not mask.any():
                    continue

                image_m = image[mask]
                time_m = time[mask]
                geom_m = geom[mask]

                try:
                    hillas = hillas_parameters(geom_m, image_m)
                except HillasParameterizationError:
                    continue

                # timing_parameters(geom_m, image_m, time_m, hillas)

                gt0 = image_m > 0
                pix_x = geom_m.pix_x[gt0]
                pix_y = geom_m.pix_y[gt0]
                peakpos = time_m[gt0]
                intensity = image_m[gt0]

                longi, trans = camera_to_shower_coordinates(
                    pix_x, pix_y, hillas.x, hillas.y, hillas.psi)
                longi = longi.value
                trans = trans.value

                # df_list.append(pd.DataFrame(dict(
                #     ipath=ipath,
                #     iev=iev,
                #     longi=longi,
                #     peakpos=peakpos,
                # )))

                p_relation = RelationPlotter()
                p_relation.plot(longi, peakpos, intensity)
                p_relation.save(
                    get_plot(
                        f"d190524_time_gradient/relation/i{ipath}_e{iev}.pdf"))
Exemple #19
0
def test_reconstruction():
    """
    a test of the complete fit procedure on one event including:
    • tailcut cleaning
    • hillas parametrisation
    • HillasPlane creation
    • direction fit
    • position fit

    in the end, proper units in the output are asserted """

    filename = get_dataset_path("gamma_test.simtel.gz")

    fit = HillasReconstructor()

    tel_azimuth = {}
    tel_altitude = {}

    source = EventSourceFactory.produce(
        input_url=filename,
        product='HESSIOEventSource',
    )

    for event in source:

        hillas_dict = {}
        for tel_id in event.dl0.tels_with_data:

            geom = event.inst.subarray.tel[tel_id].camera
            tel_azimuth[tel_id] = event.mc.tel[tel_id].azimuth_raw * u.rad
            tel_altitude[tel_id] = event.mc.tel[tel_id].altitude_raw * u.rad

            pmt_signal = event.r0.tel[tel_id].image[0]

            mask = tailcuts_clean(geom,
                                  pmt_signal,
                                  picture_thresh=10.,
                                  boundary_thresh=5.)
            pmt_signal[mask == 0] = 0

            try:
                moments = hillas_parameters(geom, pmt_signal)
                hillas_dict[tel_id] = moments
            except HillasParameterizationError as e:
                print(e)
                continue

        if len(hillas_dict) < 2:
            continue

        fit_result = fit.predict(hillas_dict, event.inst, tel_azimuth,
                                 tel_altitude)

        print(fit_result)
        fit_result.alt.to(u.deg)
        fit_result.az.to(u.deg)
        fit_result.core_x.to(u.m)
        assert fit_result.is_valid
        return
Exemple #20
0
def test_width_0():
    geom, image, clean_mask = create_sample_image("30d")

    hillas = hillas_parameters(geom[clean_mask], image[clean_mask])
    hillas.width = 0 * u.m

    conc = concentration_parameters(geom, image, hillas)
    assert conc.core == 0
Exemple #21
0
def test_array_draw():
    filename = get_dataset("gamma_test.simtel.gz")
    cam_geom = {}

    source = hessio_event_source(filename, max_events=2)
    r1 = HessioR1Calibrator(None, None)
    dl0 = CameraDL0Reducer(None, None)

    calibrator = CameraDL1Calibrator(None, None)

    for event in source:
        array_pointing = SkyCoord(event.mcheader.run_array_direction[1] * u.rad,
                                  event.mcheader.run_array_direction[0] * u.rad,
                                  frame=AltAz)
        # array_view = ArrayPlotter(instrument=event.inst,
        #                          system=TiltedGroundFrame(
        # pointing_direction=array_pointing))

        hillas_dict = {}
        r1.calibrate(event)
        dl0.reduce(event)
        calibrator.calibrate(event)  # calibrate the events

        # store MC pointing direction for the array

        for tel_id in event.dl0.tels_with_data:

            pmt_signal = event.dl1.tel[tel_id].image[0]
            geom = event.inst.subarray.tel[tel_id].camera
            fl = event.inst.subarray.tel[tel_id].optics.effective_focal_length

            # Transform the pixels positions into nominal coordinates
            camera_coord = CameraFrame(x=geom.pix_x, y=geom.pix_y,
                                       z=np.zeros(geom.pix_x.shape) * u.m,
                                       focal_length=fl,
                                       rotation=90 * u.deg - geom.cam_rotation)

            nom_coord = camera_coord.transform_to(
                NominalFrame(array_direction=array_pointing,
                             pointing_direction=array_pointing))

            mask = tailcuts_clean(geom, pmt_signal,
                                  picture_thresh=10., boundary_thresh=5.)

            try:
                moments = hillas_parameters(nom_coord.x,
                                            nom_coord.y,
                                            pmt_signal * mask)
                hillas_dict[tel_id] = moments
                nom_coord = NominalPlotter(hillas_parameters=hillas_dict,
                                           draw_axes=True)
                nom_coord.draw_array()

            except HillasParameterizationError as e:
                print(e)
                continue
def test_concentration():
    geom, image, clean_mask = create_sample_image('30d')

    hillas = hillas_parameters(geom[clean_mask], image[clean_mask])

    conc = concentration(geom, image, hillas)

    assert 0.1 <= conc.concentration_cog <= 0.3
    assert 0.05 <= conc.concentration_pixel <= 0.2
    assert 0.3 <= conc.concentration_core <= 0.6
Exemple #23
0
def test_concentration():
    geom, image, clean_mask = create_sample_image("30d")

    hillas = hillas_parameters(geom[clean_mask], image[clean_mask])

    conc = concentration(geom, image, hillas)

    assert 0.1 <= conc.cog <= 0.3
    assert 0.05 <= conc.pixel <= 0.2
    assert 0.3 <= conc.core <= 0.6
def test_FitGammaHillas():
    '''
    a test of the complete fit procedure on one event including:
    • tailcut cleaning
    • hillas parametrisation
    • GreatCircle creation
    • direction fit
    • position fit

    in the end, proper units in the output are asserted '''

    filename = get_dataset("gamma_test.simtel.gz")

    fit = HillasReconstructor()

    tel_phi = {}
    tel_theta = {}

    source = hessio_event_source(filename)

    for event in source:

        hillas_dict = {}
        for tel_id in event.dl0.tels_with_data:

            geom = event.inst.subarray.tel[tel_id].camera
            tel_phi[tel_id] = event.mc.tel[tel_id].azimuth_raw * u.rad
            tel_theta[tel_id] = (np.pi / 2 -
                                 event.mc.tel[tel_id].altitude_raw) * u.rad

            pmt_signal = event.r0.tel[tel_id].image[0]

            mask = tailcuts_clean(geom,
                                  pmt_signal,
                                  picture_thresh=10.,
                                  boundary_thresh=5.)
            pmt_signal[mask == 0] = 0

            try:
                moments = hillas_parameters(geom, pmt_signal)
                hillas_dict[tel_id] = moments
            except HillasParameterizationError as e:
                print(e)
                continue

        if len(hillas_dict) < 2: continue

        fit_result = fit.predict(hillas_dict, event.inst, tel_phi, tel_theta)

        print(fit_result)
        fit_result.alt.to(u.deg)
        fit_result.az.to(u.deg)
        fit_result.core_x.to(u.m)
        assert fit_result.is_valid
        return
Exemple #25
0
def plot_event(event, reco, pdf):
    cams = [
        event.inst.subarray.tels[i].camera for i in event.r0.tels_with_data
    ]
    cams = [c for c in cams if c.cam_id in allowed_cameras]
    n_tels = len(cams)

    p = 1
    params = {}
    pointing_azimuth = {}
    pointing_altitude = {}

    for telescope_id, dl1 in event.dl1.tel.items():
        camera = event.inst.subarray.tels[telescope_id].camera
        if camera.cam_id not in allowed_cameras:
            continue

        nn = int(np.ceil(np.sqrt(n_tels)))
        ax = plt.subplot(nn, nn, p)
        p += 1

        boundary_thresh, picture_thresh = cleaning_level[camera.cam_id]
        mask = tailcuts_clean(camera,
                              dl1.image[0],
                              boundary_thresh=boundary_thresh,
                              picture_thresh=picture_thresh,
                              min_number_picture_neighbors=1)
        #
        if mask.sum() < 3:  # only two pixel remaining. No luck anyways.
            continue

        h = hillas_parameters(
            camera[mask],
            dl1.image[0, mask],
        )

        disp = CameraDisplay(camera, ax=ax, title="CT{0}".format(telescope_id))
        disp.pixels.set_antialiaseds(False)
        disp.autoupdate = False
        disp.add_colorbar()

        # Show the camera image and overlay Hillas ellipse and clean pixels
        disp.image = dl1.image[0]
        disp.cmap = 'viridis'
        disp.highlight_pixels(mask, color='white')
        disp.overlay_moments(h, color='red', linewidth=5)

        pointing_azimuth[
            telescope_id] = event.mc.tel[telescope_id].azimuth_raw * u.rad
        pointing_altitude[
            telescope_id] = event.mc.tel[telescope_id].altitude_raw * u.rad
        params[telescope_id] = h

    return reco.predict(params, event.inst, pointing_altitude,
                        pointing_azimuth)
Exemple #26
0
def test_convert_geometry(cam_id, rot):

    geom = CameraGeometry.from_name(cam_id)
    image = create_mock_image(geom)
    hillas_0 = hillas_parameters(geom, image)

    if geom.pix_type == "hexagonal":
        convert_geometry_1d_to_2d = convert_geometry_hex1d_to_rect2d
        convert_geometry_back = convert_geometry_rect2d_back_to_hexe1d

        geom2d, image2d = convert_geometry_1d_to_2d(geom,
                                                    image,
                                                    geom.cam_id + str(rot),
                                                    add_rot=rot)
        geom1d, image1d = convert_geometry_back(geom2d,
                                                image2d,
                                                geom.cam_id + str(rot),
                                                add_rot=rot)

    else:
        if geom.cam_id == "ASTRICam":
            convert_geometry_1d_to_2d = astri_to_2d_array
            convert_geometry_back = array_2d_to_astri
        elif geom.cam_id == "CHEC":
            convert_geometry_1d_to_2d = chec_to_2d_array
            convert_geometry_back = array_2d_to_chec
        else:
            print("camera {geom.cam_id} not implemented")
            return

        image2d = convert_geometry_1d_to_2d(image)
        image1d = convert_geometry_back(image2d)

    hillas_1 = hillas_parameters(geom, image1d)

    # if __name__ == "__main__":
    #     plot_cam(geom, geom2d, geom1d, image, image2d, image1d)
    #     plt.tight_layout()
    #     plt.pause(.1)

    assert np.abs(hillas_1.phi - hillas_0.phi).deg < 1.0
Exemple #27
0
def test_no_pixels_near_cog():
    geom, image, clean_mask = create_sample_image("30d")

    hillas = hillas_parameters(geom[clean_mask], image[clean_mask])

    # remove pixels close to cog from the cleaning pixels
    clean_mask &= ((geom.pix_x - hillas.x)**2 +
                   (geom.pix_y - hillas.y)**2) >= (2 * geom.pixel_width**2)

    conc = concentration_parameters(geom[clean_mask], image[clean_mask],
                                    hillas)
    assert conc.cog == 0
Exemple #28
0
def test_skewness():
    np.random.seed(42)

    geom = CameraGeometry.from_name('LSTCam')

    width = 0.03 * u.m
    length = 0.15 * u.m
    intensity = 2500

    xs = u.Quantity([0.5, 0.5, -0.5, -0.5], u.m)
    ys = u.Quantity([0.5, -0.5, 0.5, -0.5], u.m)
    psis = Angle([-90, -45, 0, 45, 90], unit='deg')
    skews = [0, 0.3, 0.6]

    for x, y, psi, skew in itertools.product(xs, ys, psis, skews):
        # make a toymodel shower model
        model = toymodel.SkewedGaussian(
            x=x,
            y=y,
            width=width,
            length=length,
            psi=psi,
            skewness=skew,
        )

        _, signal, _ = model.generate_image(
            geom,
            intensity=intensity,
            nsb_level_pe=5,
        )

        result = hillas_parameters(geom, signal)

        assert quantity_approx(result.x, x, rel=0.1)
        assert quantity_approx(result.y, y, rel=0.1)

        assert quantity_approx(result.width, width, rel=0.1)
        assert quantity_approx(result.length, length, rel=0.1)

        psi_same = result.psi.to_value(u.deg) == approx(psi.deg, abs=3)
        psi_opposite = abs(result.psi.to_value(u.deg) - psi.deg) == approx(
            180.0, abs=3)
        assert psi_same or psi_opposite

        # if we have delta the other way around, we get a negative sign for skewness
        # skewness is quite imprecise, maybe we could improve this somehow
        if psi_same:
            assert result.skewness == approx(skew, abs=0.3)
        else:
            assert result.skewness == approx(-skew, abs=0.3)

        assert signal.sum() == result.intensity
def test_reconstruction():
    """
    a test of the complete fit procedure on one event including:
    • tailcut cleaning
    • hillas parametrisation
    • HillasPlane creation
    • direction fit
    • position fit

    in the end, proper units in the output are asserted """

    filename = get_dataset_path("gamma_test.simtel.gz")

    fit = HillasReconstructor()

    tel_azimuth = {}
    tel_altitude = {}

    source = EventSourceFactory.produce(input_url=filename)

    for event in source:

        hillas_dict = {}
        for tel_id in event.dl0.tels_with_data:

            geom = event.inst.subarray.tel[tel_id].camera
            tel_azimuth[tel_id] = event.mc.tel[tel_id].azimuth_raw * u.rad
            tel_altitude[tel_id] = event.mc.tel[tel_id].altitude_raw * u.rad

            pmt_signal = event.r0.tel[tel_id].image[0]

            mask = tailcuts_clean(geom, pmt_signal,
                                  picture_thresh=10., boundary_thresh=5.)
            pmt_signal[mask == 0] = 0

            try:
                moments = hillas_parameters(geom, pmt_signal)
                hillas_dict[tel_id] = moments
            except HillasParameterizationError as e:
                print(e)
                continue

        if len(hillas_dict) < 2:
            continue

        fit_result = fit.predict(hillas_dict, event.inst, tel_azimuth, tel_altitude)

        print(fit_result)
        fit_result.alt.to(u.deg)
        fit_result.az.to(u.deg)
        fit_result.core_x.to(u.m)
        assert fit_result.is_valid
def test_convert_geometry(cam_id, rot):

    geom = CameraGeometry.from_name(cam_id)
    image = create_mock_image(geom)
    hillas_0 = hillas_parameters(geom, image)

    if geom.pix_type == 'hexagonal':
        convert_geometry_1d_to_2d = convert_geometry_hex1d_to_rect2d
        convert_geometry_back = convert_geometry_rect2d_back_to_hexe1d

        geom2d, image2d = convert_geometry_1d_to_2d(geom, image,
                                                    geom.cam_id + str(rot),
                                                    add_rot=rot)
        geom1d, image1d = convert_geometry_back(geom2d, image2d,
                                                geom.cam_id + str(rot),
                                                add_rot=rot)

    else:
        if geom.cam_id == "ASTRICam":
            convert_geometry_1d_to_2d = astri_to_2d_array
            convert_geometry_back = array_2d_to_astri
        elif geom.cam_id == "CHEC":
            convert_geometry_1d_to_2d = chec_to_2d_array
            convert_geometry_back = array_2d_to_chec
        else:
            print("camera {geom.cam_id} not implemented")
            return

        image2d = convert_geometry_1d_to_2d(image)
        image1d = convert_geometry_back(image2d)

    hillas_1 = hillas_parameters(geom, image1d)

    # if __name__ == "__main__":
    #     plot_cam(geom, geom2d, geom1d, image, image2d, image1d)
    #     plt.tight_layout()
    #     plt.pause(.1)

    assert np.abs(hillas_1.phi - hillas_0.phi).deg < 1.0
Exemple #31
0
def test_with_toy():
    np.random.seed(42)

    geom = CameraGeometry.from_name("LSTCam")

    width = 0.03 * u.m
    length = 0.15 * u.m
    width_uncertainty = 0.00094 * u.m
    length_uncertainty = 0.00465 * u.m
    intensity = 500

    xs = u.Quantity([0.5, 0.5, -0.5, -0.5], u.m)
    ys = u.Quantity([0.5, -0.5, 0.5, -0.5], u.m)
    psis = Angle([-90, -45, 0, 45, 90], unit="deg")

    for x, y in zip(xs, ys):
        for psi in psis:

            # make a toymodel shower model
            model = toymodel.Gaussian(
                x=x,
                y=y,
                width=width,
                length=length,
                psi=psi,
            )

            image, signal, noise = model.generate_image(
                geom,
                intensity=intensity,
                nsb_level_pe=5,
            )

            result = hillas_parameters(geom, signal)

            assert u.isclose(result.x, x, rtol=0.1)
            assert u.isclose(result.y, y, rtol=0.1)

            assert u.isclose(result.width, width, rtol=0.1)
            assert u.isclose(result.width_uncertainty,
                             width_uncertainty,
                             rtol=0.4)
            assert u.isclose(result.length, length, rtol=0.1)
            assert u.isclose(result.length_uncertainty,
                             length_uncertainty,
                             rtol=0.4)
            assert (result.psi.to_value(u.deg) == approx(
                psi.deg, abs=2)) or abs(result.psi.to_value(u.deg) -
                                        psi.deg) == approx(180.0, abs=2)

            assert signal.sum() == result.intensity
Exemple #32
0
def test_convert_geometry_mock(cam_id, rot):
    """here we use a different key for the back conversion to trigger the mock conversion
    """

    geom = CameraGeometry.from_name(cam_id)

    model = generate_2d_shower_model(centroid=(0.4, 0),
                                     width=0.01,
                                     length=0.03,
                                     psi="25d")

    _, image, _ = make_toymodel_shower_image(geom,
                                             model.pdf,
                                             intensity=50,
                                             nsb_level_pe=100)

    hillas_0 = hillas_parameters(geom, image)

    if geom.pix_type == 'hexagonal':
        convert_geometry_1d_to_2d = convert_geometry_hex1d_to_rect2d
        convert_geometry_back = convert_geometry_rect2d_back_to_hexe1d

        geom2d, image2d = convert_geometry_1d_to_2d(geom,
                                                    image,
                                                    key=None,
                                                    add_rot=rot)
        geom1d, image1d = convert_geometry_back(
            geom2d,
            image2d,
            "_".join([geom.cam_id, str(rot), "mock"]),
            add_rot=rot)
    else:
        # originally rectangular geometries don't need a buffer and therefore no mock
        # conversion
        return

    hillas_1 = hillas_parameters(geom, image1d)
    assert np.abs(hillas_1.phi - hillas_0.phi).deg < 1.0
def test_FitGammaHillas():

    filename = get_path("gamma_test.simtel.gz")

    fit = FitGammaHillas()
    fit.setup_geometry(*load_hessio(filename),
                       phi=180 * u.deg,
                       theta=20 * u.deg)

    tel_geom = {}

    source = hessio_event_source(filename)

    for event in source:

        hillas_dict = {}
        for tel_id in set(event.trig.tels_with_trigger) & set(
                event.dl0.tels_with_data):

            if tel_id not in tel_geom:
                tel_geom[tel_id] = CameraGeometry.guess(
                    fit.cameras(tel_id)['PixX'].to(u.m),
                    fit.cameras(tel_id)['PixY'].to(u.m),
                    fit.telescopes['FL'][tel_id - 1] * u.m)

            pmt_signal = event.dl0.tel[tel_id].adc_sums[0]

            mask = tailcuts_clean(tel_geom[tel_id],
                                  pmt_signal,
                                  1,
                                  picture_thresh=10.,
                                  boundary_thresh=5.)
            pmt_signal[mask is False] = 0

            try:
                moments, moms2 = hillas_parameters(
                    fit.cameras(tel_id)['PixX'],
                    fit.cameras(tel_id)['PixY'], pmt_signal)
                hillas_dict[tel_id] = moments
            except HillasParameterizationError as e:
                print(e)
                continue

        if len(hillas_dict) < 2: continue

        fit_result = fit.predict(hillas_dict)

        print(fit_result)
        assert fit_result
        return
    def start(self):
        # n_events = self.reader.num_events
        source = self.reader.read()
        desc = "Looping through file"
        for event in tqdm(source, desc=desc): #, total=n_events):
            ev = event.count
            self.calibrator.calibrate(event)

            for tel_id in event.r0.tels_with_data:
                geom = self.geometry.get_camera(tel_id)
                nom_geom = self.geometry.get_nominal(tel_id)

                image = event.dl1.tel[tel_id].image[0]

                # Cleaning
                cuts = self.tail_cut[geom.cam_id]
                tc = tailcuts_clean(geom, image, *cuts)
                if not tc.any():
                    # self.log.warning('No image')
                    continue
                # cleaned = np.ma.masked_array(image, mask=~tc)
                cleaned = image * tc

                # Hillas
                try:
                    hillas = hillas_parameters(nom_geom, cleaned)
                except HillasParameterizationError:
                    # self.log.warning('HillasParameterizationError')
                    continue

                # embed()

                fig = plt.figure(figsize=(10, 10))
                ax = fig.add_subplot(111)
                camera = CameraDisplay(nom_geom, ax=ax, image=image, cmap='viridis')
                camera.add_colorbar()
                cen_x = u.Quantity(hillas.cen_x).value
                cen_y = u.Quantity(hillas.cen_y).value
                length = u.Quantity(hillas.length).value
                width = u.Quantity(hillas.width).value

                print(cen_x, cen_y, length, width)

                camera.add_ellipse(centroid=(cen_x, cen_y),
                                   length=length * 2,
                                   width=width * 2,
                                   angle=hillas.psi.rad)

                plt.show()
Exemple #35
0
def test_skewness():
    np.random.seed(42)

    geom = CameraGeometry.from_name('LSTCam')

    width = 0.03 * u.m
    length = 0.15 * u.m
    intensity = 2500

    xs = u.Quantity([0.5, 0.5, -0.5, -0.5], u.m)
    ys = u.Quantity([0.5, -0.5, 0.5, -0.5], u.m)
    psis = Angle([-90, -45, 0, 45, 90], unit='deg')
    skews = [0, 0.3, 0.6]

    for x, y, psi, skew in itertools.product(xs, ys, psis, skews):
        # make a toymodel shower model
        model = toymodel.SkewedGaussian(
            x=x, y=y,
            width=width,
            length=length,
            psi=psi,
            skewness=skew,
        )

        _, signal, _ = model.generate_image(
            geom, intensity=intensity, nsb_level_pe=5,
        )

        result = hillas_parameters(geom, signal)

        assert quantity_approx(result.x, x, rel=0.1)
        assert quantity_approx(result.y, y, rel=0.1)

        assert quantity_approx(result.width, width, rel=0.1)
        assert quantity_approx(result.length, length, rel=0.1)

        psi_same = result.psi.to_value(u.deg) == approx(psi.deg, abs=3)
        psi_opposite = abs(result.psi.to_value(u.deg) - psi.deg) == approx(180.0, abs=3)
        assert psi_same or psi_opposite

        # if we have delta the other way around, we get a negative sign for skewness
        # skewness is quite imprecise, maybe we could improve this somehow
        if psi_same:
            assert result.skewness == approx(skew, abs=0.3)
        else:
            assert result.skewness == approx(-skew, abs=0.3)

        assert signal.sum() == result.intensity
Exemple #36
0
def hillas_parameters(geom, image):
    try:
        return hillas.hillas_parameters(geom, image)
    except hillas.HillasParameterizationError:
        unit = geom.pix_x.unit
        return hillas.MomentParameters(
            size=0.,
            cen_x=np.nan * unit,
            cen_y=np.nan * unit,
            length=np.nan * unit,
            width=np.nan * unit,
            r=np.nan * unit,
            phi=hillas.Angle(np.nan * u.rad),
            psi=hillas.Angle(np.nan * u.rad),
            miss=np.nan * unit,
            skewness=None,
            kurtosis=None,
        )
def test_FitGammaHillas():

    filename = get_path("gamma_test.simtel.gz")

    fit = FitGammaHillas()
    fit.setup_geometry(*load_hessio(filename), phi=180 * u.deg, theta=20 * u.deg)

    tel_geom = {}

    source = hessio_event_source(filename)

    for event in source:

        hillas_dict = {}
        for tel_id in set(event.trig.tels_with_trigger) & set(event.dl0.tels_with_data):

            if tel_id not in tel_geom:
                tel_geom[tel_id] = CameraGeometry.guess(
                    fit.cameras(tel_id)["PixX"].to(u.m),
                    fit.cameras(tel_id)["PixY"].to(u.m),
                    fit.telescopes["FL"][tel_id - 1] * u.m,
                )

            pmt_signal = event.dl0.tel[tel_id].adc_sums[0]

            mask = tailcuts_clean(tel_geom[tel_id], pmt_signal, 1, picture_thresh=10.0, boundary_thresh=5.0)
            pmt_signal[mask is False] = 0

            try:
                moments, moms2 = hillas_parameters(fit.cameras(tel_id)["PixX"], fit.cameras(tel_id)["PixY"], pmt_signal)
                hillas_dict[tel_id] = moments
            except HillasParameterizationError as e:
                print(e)
                continue

        if len(hillas_dict) < 2:
            continue

        fit_result = fit.predict(hillas_dict)

        print(fit_result)
        assert fit_result
        return
Exemple #38
0
def test_with_toy():
    np.random.seed(42)

    geom = CameraGeometry.from_name('LSTCam')

    width = 0.03
    length = 0.15
    intensity = 500

    xs = (0.5, 0.5, -0.5, -0.5)
    ys = (0.5, -0.5, 0.5, -0.5)
    psis = Angle([-90, -45, 0, 45, 90], unit='deg')

    for x, y in zip(xs, ys):
        for psi in psis:

            # make a toymodel shower model
            model = toymodel.generate_2d_shower_model(
                centroid=(x, y),
                width=width,
                length=length,
                psi=psi,
            )

            image, signal, noise = toymodel.make_toymodel_shower_image(
                geom,
                model.pdf,
                intensity=intensity,
                nsb_level_pe=5,
            )

            result = hillas_parameters(geom, signal)

            assert result.x.to_value(u.m) == approx(x, rel=0.1)
            assert result.y.to_value(u.m) == approx(y, rel=0.1)

            assert result.width.to_value(u.m) == approx(width, rel=0.1)
            assert result.length.to_value(u.m) == approx(length, rel=0.1)
            assert ((result.psi.to_value(u.deg) == approx(psi.deg, abs=2))
                    or abs(result.psi.to_value(u.deg) - psi.deg) == approx(
                        180.0, abs=2))

            assert signal.sum() == result.intensity
Exemple #39
0
def test_with_toy():
    np.random.seed(42)

    geom = CameraGeometry.from_name('LSTCam')

    width = 0.03 * u.m
    length = 0.15 * u.m
    intensity = 500

    xs = u.Quantity([0.5, 0.5, -0.5, -0.5], u.m)
    ys = u.Quantity([0.5, -0.5, 0.5, -0.5], u.m)
    psis = Angle([-90, -45, 0, 45, 90], unit='deg')

    for x, y in zip(xs, ys):
        for psi in psis:

            # make a toymodel shower model
            model = toymodel.Gaussian(
                x=x, y=y,
                width=width, length=length,
                psi=psi,
            )

            image, signal, noise = model.generate_image(
                geom, intensity=intensity, nsb_level_pe=5,
            )

            result = hillas_parameters(geom, signal)

            assert quantity_approx(result.x, x, rel=0.1)
            assert quantity_approx(result.y, y, rel=0.1)

            assert quantity_approx(result.width, width, rel=0.1)
            assert quantity_approx(result.length, length, rel=0.1)
            assert (
                (result.psi.to_value(u.deg) == approx(psi.deg, abs=2))
                or abs(result.psi.to_value(u.deg) - psi.deg) == approx(180.0, abs=2)
            )

            assert signal.sum() == result.intensity
Exemple #40
0
def test_single_pixel():
    x = y = np.arange(3)
    x, y = np.meshgrid(x, y)

    geom = CameraGeometry(
        camera_name="testcam",
        pix_id=np.arange(9),
        pix_x=x.ravel() * u.cm,
        pix_y=y.ravel() * u.cm,
        pix_type="rectangular",
        pix_area=1 * u.cm**2,
    )

    image = np.zeros((3, 3))
    image[1, 1] = 10
    image = image.ravel()

    hillas = hillas_parameters(geom, image)

    assert hillas.length.value == 0
    assert hillas.width.value == 0
    assert np.isnan(hillas.psi)
def test_convert_geometry():
    filename = get_path("gamma_test.simtel.gz")

    cam_geom = {}

    source = hessio_event_source(filename)

    # testing a few images just for the sake of being thorough
    counter = 5

    for event in source:

        for tel_id in event.dl0.tels_with_data:
            if tel_id not in cam_geom:
                cam_geom[tel_id] = CameraGeometry.guess(
                                        event.inst.pixel_pos[tel_id][0],
                                        event.inst.pixel_pos[tel_id][1],
                                        event.inst.optical_foclen[tel_id])


            # we want to test conversion of hex to rectangular pixel grid
            if cam_geom[tel_id].pix_type is not "hexagonal":
                continue

            print(tel_id, cam_geom[tel_id].pix_type)

            pmt_signal = apply_mc_calibration(
                        #event.dl0.tel[tel_id].adc_samples[0],
                        event.dl0.tel[tel_id].adc_sums[0],
                        event.mc.tel[tel_id].dc_to_pe[0],
                        event.mc.tel[tel_id].pedestal[0])

            new_geom, new_signal = convert_geometry_1d_to_2d(
                cam_geom[tel_id], pmt_signal, cam_geom[tel_id].cam_id, add_rot=-2)

            unrot_geom, unrot_signal = convert_geometry_back(
                new_geom, new_signal, cam_geom[tel_id].cam_id,
                event.inst.optical_foclen[tel_id], add_rot=4)

            # if run as main, do some plotting
            if __name__ == "__main__":
                fig = plt.figure()
                plt.style.use('seaborn-talk')

                ax1 = fig.add_subplot(131)
                disp1 = CameraDisplay(cam_geom[tel_id],
                                      image=np.sum(pmt_signal, axis=1)
                                      if pmt_signal.shape[-1] == 25 else pmt_signal,
                                      ax=ax1)
                disp1.cmap = plt.cm.hot
                disp1.add_colorbar()
                plt.title("original geometry")

                ax2 = fig.add_subplot(132)
                disp2 = CameraDisplay(new_geom,
                                      image=np.sum(new_signal, axis=2)
                                      if new_signal.shape[-1] == 25 else new_signal,
                                      ax=ax2)
                disp2.cmap = plt.cm.hot
                disp2.add_colorbar()
                plt.title("slanted geometry")

                ax3 = fig.add_subplot(133)
                disp3 = CameraDisplay(unrot_geom, image=np.sum(unrot_signal, axis=1)
                                      if unrot_signal.shape[-1] == 25 else unrot_signal,
                                      ax=ax3)
                disp3.cmap = plt.cm.hot
                disp3.add_colorbar()
                plt.title("geometry converted back to hex")

                plt.show()


            # do some tailcuts cleaning
            mask1 = tailcuts_clean(cam_geom[tel_id], pmt_signal, 1,
                                   picture_thresh=10.,
                                   boundary_thresh=5.)

            mask2 = tailcuts_clean(unrot_geom, unrot_signal, 1,
                                   picture_thresh=10.,
                                   boundary_thresh=5.)
            pmt_signal[mask1==False] = 0
            unrot_signal[mask2==False] = 0

            '''
            testing back and forth conversion on hillas parameters... '''
            try:
                moments1 = hillas_parameters(cam_geom[tel_id].pix_x,
                                             cam_geom[tel_id].pix_y,
                                             pmt_signal)

                moments2 = hillas_parameters(unrot_geom.pix_x,
                                             unrot_geom.pix_y,
                                             unrot_signal)
            except (HillasParameterizationError, AssertionError) as e:
                '''
                we don't want this test to fail because the hillas code
                threw an error '''
                print(e)
                counter -= 1
                if counter < 0:
                    return
                else:
                    continue

            '''
            test if the hillas parameters from the original geometry and the
            forth-and-back rotated geometry are close '''
            assert np.allclose(
                [moments1.length.value, moments1.width.value,
                 moments1.phi.value],
                [moments2.length.value, moments2.width.value,
                 moments2.phi.value],
                rtol=1e-2, atol=1e-2)
            counter -= 1
            if counter < 0:
                return
Exemple #42
0
def test_reconstructors(reconstructors):
    """
    a test of the complete fit procedure on one event including:
    • tailcut cleaning
    • hillas parametrisation
    • HillasPlane creation
    • direction fit
    • position fit

    in the end, proper units in the output are asserted """

    filename = get_dataset_path("gamma_test_large.simtel.gz")

    source = event_source(filename, max_events=10)
    horizon_frame = AltAz()

    # record how many events were reconstructed by each reconstructor
    reconstructed_events = np.zeros((len(reconstructors)))

    for event in source:
        array_pointing = SkyCoord(az=event.mc.az,
                                  alt=event.mc.alt,
                                  frame=horizon_frame)

        hillas_dict = {}
        telescope_pointings = {}

        for tel_id in event.dl0.tels_with_data:

            geom = source.subarray.tel[tel_id].camera.geometry

            telescope_pointings[tel_id] = SkyCoord(
                alt=event.pointing.tel[tel_id].altitude,
                az=event.pointing.tel[tel_id].azimuth,
                frame=horizon_frame)
            pmt_signal = event.r0.tel[tel_id].waveform[0].sum(axis=1)

            mask = tailcuts_clean(geom,
                                  pmt_signal,
                                  picture_thresh=10.,
                                  boundary_thresh=5.)
            pmt_signal[mask == 0] = 0

            try:
                moments = hillas_parameters(geom, pmt_signal)
                hillas_dict[tel_id] = moments
            except HillasParameterizationError as e:
                print(e)
                continue

        if len(hillas_dict) < 2:
            continue

        for count, reco_method in enumerate(reconstructors):
            reconstructed_events[count] += 1
            reconstructor = reco_method()
            reconstructor_out = reconstructor.predict(hillas_dict,
                                                      source.subarray,
                                                      array_pointing,
                                                      telescope_pointings)

            reconstructor_out.alt.to(u.deg)
            reconstructor_out.az.to(u.deg)
            reconstructor_out.core_x.to(u.m)
            assert reconstructor_out.is_valid

    np.testing.assert_array_less(np.zeros_like(reconstructed_events),
                                 reconstructed_events)
Exemple #43
0
def test_convert_geometry():
    filename = get_path("gamma_test.simtel.gz")

    cam_geom = {}

    source = hessio_event_source(filename)

    # testing a few images just for the sake of being thorough
    counter = 5

    for event in source:

        for tel_id in event.dl0.tels_with_data:
            if tel_id not in cam_geom:
                cam_geom[tel_id] = CameraGeometry.guess(
                    event.inst.pixel_pos[tel_id][0],
                    event.inst.pixel_pos[tel_id][1],
                    event.inst.optical_foclen[tel_id])

            # we want to test conversion of hex to rectangular pixel grid
            if cam_geom[tel_id].pix_type is not "hexagonal":
                continue

            print(tel_id, cam_geom[tel_id].pix_type)

            pmt_signal = apply_mc_calibration(
                #event.dl0.tel[tel_id].adc_samples[0],
                event.dl0.tel[tel_id].adc_sums[0],
                event.mc.tel[tel_id].dc_to_pe[0],
                event.mc.tel[tel_id].pedestal[0])

            new_geom, new_signal = convert_geometry_1d_to_2d(
                cam_geom[tel_id],
                pmt_signal,
                cam_geom[tel_id].cam_id,
                add_rot=-2)

            unrot_geom, unrot_signal = convert_geometry_back(
                new_geom,
                new_signal,
                cam_geom[tel_id].cam_id,
                event.inst.optical_foclen[tel_id],
                add_rot=4)

            # if run as main, do some plotting
            if __name__ == "__main__":
                fig = plt.figure()
                plt.style.use('seaborn-talk')

                ax1 = fig.add_subplot(131)
                disp1 = CameraDisplay(
                    cam_geom[tel_id],
                    image=np.sum(pmt_signal, axis=1)
                    if pmt_signal.shape[-1] == 25 else pmt_signal,
                    ax=ax1)
                disp1.cmap = plt.cm.hot
                disp1.add_colorbar()
                plt.title("original geometry")

                ax2 = fig.add_subplot(132)
                disp2 = CameraDisplay(
                    new_geom,
                    image=np.sum(new_signal, axis=2)
                    if new_signal.shape[-1] == 25 else new_signal,
                    ax=ax2)
                disp2.cmap = plt.cm.hot
                disp2.add_colorbar()
                plt.title("slanted geometry")

                ax3 = fig.add_subplot(133)
                disp3 = CameraDisplay(
                    unrot_geom,
                    image=np.sum(unrot_signal, axis=1)
                    if unrot_signal.shape[-1] == 25 else unrot_signal,
                    ax=ax3)
                disp3.cmap = plt.cm.hot
                disp3.add_colorbar()
                plt.title("geometry converted back to hex")

                plt.show()

            # do some tailcuts cleaning
            mask1 = tailcuts_clean(cam_geom[tel_id],
                                   pmt_signal,
                                   1,
                                   picture_thresh=10.,
                                   boundary_thresh=5.)

            mask2 = tailcuts_clean(unrot_geom,
                                   unrot_signal,
                                   1,
                                   picture_thresh=10.,
                                   boundary_thresh=5.)
            pmt_signal[mask1 == False] = 0
            unrot_signal[mask2 == False] = 0
            '''
            testing back and forth conversion on hillas parameters... '''
            try:
                moments1 = hillas_parameters(cam_geom[tel_id].pix_x,
                                             cam_geom[tel_id].pix_y,
                                             pmt_signal)

                moments2 = hillas_parameters(unrot_geom.pix_x,
                                             unrot_geom.pix_y, unrot_signal)
            except (HillasParameterizationError, AssertionError) as e:
                '''
                we don't want this test to fail because the hillas code
                threw an error '''
                print(e)
                counter -= 1
                if counter < 0:
                    return
                else:
                    continue
            '''
            test if the hillas parameters from the original geometry and the
            forth-and-back rotated geometry are close '''
            assert np.allclose([
                moments1.length.value, moments1.width.value, moments1.phi.value
            ], [
                moments2.length.value, moments2.width.value, moments2.phi.value
            ],
                               rtol=1e-2,
                               atol=1e-2)
            counter -= 1
            if counter < 0:
                return
Exemple #44
0
def test_hillas_container():
    geom, image = create_sample_image_zeros(psi='0d')

    params = hillas_parameters(geom, image)
    assert isinstance(params, HillasParametersContainer)
Exemple #45
0
def test_hillas_failure():
    geom, image = create_sample_image_zeros(psi='0d')
    blank_image = zeros_like(image)

    with pytest.raises(HillasParameterizationError):
        hillas_parameters(geom, blank_image)
Exemple #46
0
    # Create a fake camera image to display:
    model = mock.generate_2d_shower_model(centroid=(0.2, 0.0),
                                          width=0.01,
                                          length=0.1,
                                          psi='35d')

    image, sig, bg = mock.make_mock_shower_image(geom, model.pdf,
                                                 intensity=50,
                                                 nsb_level_pe=1000)

    # Apply really stupid image cleaning (single threshold):
    clean = image.copy()
    clean[image <= 3.0 * image.mean()] = 0.0

    # Calculate image parameters
    hillas = hillas_parameters(geom.pix_x, geom.pix_y, clean)
    print(hillas)

    # Show the camera image and overlay Hillas ellipse
    disp.image = image
    disp.overlay_moments(hillas, color='seagreen', linewidth=3)

    # Draw the neighbors of pixel 100 in red, and the neighbor-neighbors in
    # green
    for ii in geom.neighbors[130]:
        draw_neighbors(geom, ii, color='green')

    draw_neighbors(geom, 130, color='cyan', lw=2)

    plt.show()