Exemple #1
0
    def predict(self, hillas_parameters, tel_x, tel_y, array_direction):
        """

        Parameters
        ----------
        hillas_parameters: dict
            Dictionary containing Hillas parameters for all telescopes in reconstruction
        tel_x: dict
            Dictionary containing telescope position on ground for all telescopes in 
            reconstruction
        tel_y: dict
            Dictionary containing telescope position on ground for all telescopes in 
            reconstruction
        array_direction: HorizonFrame
            Pointing direction of the array
        Returns
        -------

        """
        src_x, src_y, err_x, err_y = self.reconstruct_nominal(
            hillas_parameters)
        core_x, core_y, core_err_x, core_err_y = self.reconstruct_tilted(
            hillas_parameters, tel_x, tel_y)
        err_x *= u.rad
        err_y *= u.rad

        nom = NominalFrame(x=src_x * u.rad,
                           y=src_y * u.rad,
                           array_direction=array_direction)
        horiz = nom.transform_to(HorizonFrame())
        result = ReconstructedShowerContainer()
        result.alt, result.az = horiz.alt, horiz.az

        tilt = TiltedGroundFrame(x=core_x * u.m,
                                 y=core_y * u.m,
                                 pointing_direction=array_direction)
        grd = project_to_ground(tilt)
        result.core_x = grd.x
        result.core_y = grd.y

        x_max = self.reconstruct_xmax(nom.x, nom.y, tilt.x, tilt.y,
                                      hillas_parameters, tel_x, tel_y,
                                      90 * u.deg - array_direction.alt)

        result.core_uncert = np.sqrt(core_err_x * core_err_x +
                                     core_err_y * core_err_y) * u.m

        result.tel_ids = [h for h in hillas_parameters.keys()]
        result.average_size = np.mean(
            [h.size for h in hillas_parameters.values()])
        result.is_valid = True

        src_error = np.sqrt(err_x * err_x + err_y * err_y)
        result.alt_uncert = src_error.to(u.deg)
        result.az_uncert = src_error.to(u.deg)
        result.h_max = x_max
        result.h_max_uncert = np.nan
        result.goodness_of_fit = np.nan

        return result
    def predict(self, hillas_parameters, tel_x, tel_y, array_direction):
        """

        Parameters
        ----------
        hillas_parameters: dict
            Dictionary containing Hillas parameters for all telescopes in reconstruction
        tel_x: dict
            Dictionary containing telescope position on ground for all telescopes in 
            reconstruction
        tel_y: dict
            Dictionary containing telescope position on ground for all telescopes in 
            reconstruction
        array_direction: HorizonFrame
            Pointing direction of the array
        Returns
        -------

        """
        src_x, src_y, err_x, err_y = self.reconstruct_nominal(hillas_parameters)
        core_x, core_y, core_err_x, core_err_y = self.reconstruct_tilted(
            hillas_parameters, tel_x, tel_y)
        err_x *= u.rad
        err_y *= u.rad

        nom = NominalFrame(x=src_x * u.rad, y=src_y * u.rad,
                           array_direction=array_direction)
        horiz = nom.transform_to(HorizonFrame())
        result = ReconstructedShowerContainer()
        result.alt, result.az = horiz.alt, horiz.az

        tilt = TiltedGroundFrame(x=core_x * u.m, y=core_y * u.m,
                                 pointing_direction=array_direction)
        grd = project_to_ground(tilt)
        result.core_x = grd.x
        result.core_y = grd.y

        x_max = self.reconstruct_xmax(nom.x, nom.y, tilt.x, tilt.y, hillas_parameters,
                                      tel_x, tel_y, 90 * u.deg - array_direction.alt)

        result.core_uncert = np.sqrt(
            core_err_x * core_err_x + core_err_y * core_err_y) * u.m

        result.tel_ids = [h for h in hillas_parameters.keys()]
        result.average_size = np.mean([h.size for h in hillas_parameters.values()])
        result.is_valid = True

        src_error = np.sqrt(err_x * err_x + err_y * err_y)
        result.alt_uncert = src_error.to(u.deg)
        result.az_uncert = src_error.to(u.deg)
        result.h_max = x_max
        result.h_max_uncert = np.nan
        result.goodness_of_fit = np.nan

        return result
Exemple #3
0
    def predict(self, hillas_dict, inst, tel_phi, tel_theta, seed_pos=(0, 0)):
        '''The function you want to call for the reconstruction of the
        event. It takes care of setting up the event and consecutively
        calls the functions for the direction and core position
        reconstruction.  Shower parameters not reconstructed by this
        class are set to np.nan

        Parameters
        -----------
        hillas_dict : python dictionary
            dictionary with telescope IDs as key and
            MomentParameters instances as values
        seed_pos : python tuple
            shape (2) tuple with a possible seed for
            the core position fit (e.g. CoG of all telescope images)

        '''

        self.get_great_circles(hillas_dict, inst, tel_phi, tel_theta)
        # algebraic direction estimate
        dir1 = self.fit_origin_crosses()[0]

        # direction estimate using numerical minimisation
        # does not really improve the fit for now
        # dir2 = self.fit_origin_minimise(dir1)

        # core position estimate using numerical minimisation
        # pos = self.fit_core_minimise(seed_pos)

        # core position estimate using a geometric approach
        pos = self.fit_core_crosses()

        # container class for reconstructed showers '''
        result = ReconstructedShowerContainer()
        (phi, theta) = linalg.get_phi_theta(dir1).to(u.deg)

        # TODO make sure az and phi turn in same direction...
        result.alt, result.az = 90 * u.deg - theta, phi
        result.core_x = pos[0]
        result.core_y = pos[1]

        result.tel_ids = [h for h in hillas_dict.keys()]
        result.average_size = np.mean([h.size for h in hillas_dict.values()])
        result.is_valid = True

        result.alt_uncert = np.nan
        result.az_uncert = np.nan
        result.core_uncert = np.nan
        result.h_max = np.nan
        result.h_max_uncert = np.nan
        result.goodness_of_fit = np.nan

        return result
Exemple #4
0
    def predict(self, hillas_dict, inst, tel_phi, tel_theta, seed_pos=(0, 0)):
        '''The function you want to call for the reconstruction of the
        event. It takes care of setting up the event and consecutively
        calls the functions for the direction and core position
        reconstruction.  Shower parameters not reconstructed by this
        class are set to np.nan

        Parameters
        -----------
        hillas_dict : python dictionary
            dictionary with telescope IDs as key and
            MomentParameters instances as values
        seed_pos : python tuple
            shape (2) tuple with a possible seed for
            the core position fit (e.g. CoG of all telescope images)

        '''

        self.get_great_circles(hillas_dict, inst, tel_phi, tel_theta)
        # algebraic direction estimate
        dir1 = self.fit_origin_crosses()[0]

        # direction estimate using numerical minimisation
        # does not really improve the fit for now
        # dir2 = self.fit_origin_minimise(dir1)

        # core position estimate using numerical minimisation
        # pos = self.fit_core_minimise(seed_pos)

        # core position estimate using a geometric approach
        pos = self.fit_core_crosses()

        # container class for reconstructed showers '''
        result = ReconstructedShowerContainer()
        (phi, theta) = linalg.get_phi_theta(dir1).to(u.deg)

        # TODO make sure az and phi turn in same direction...
        result.alt, result.az = 90 * u.deg - theta, phi
        result.core_x = pos[0]
        result.core_y = pos[1]

        result.tel_ids = [h for h in hillas_dict.keys()]
        result.average_size = np.mean([h.size for h in hillas_dict.values()])
        result.is_valid = True

        result.alt_uncert = np.nan
        result.az_uncert = np.nan
        result.core_uncert = np.nan
        result.h_max = np.nan
        result.h_max_uncert = np.nan
        result.goodness_of_fit = np.nan

        return result
Exemple #5
0
    def predict(self, hillas_dict, inst, tel_phi, tel_theta, seed_pos=(0, 0)):
        """The function you want to call for the reconstruction of the
        event. It takes care of setting up the event and consecutively
        calls the functions for the direction and core position
        reconstruction.  Shower parameters not reconstructed by this
        class are set to np.nan

        Parameters
        -----------
        hillas_dict : python dictionary
            dictionary with telescope IDs as key and
            MomentParameters instances as values
        seed_pos : python tuple
            shape (2) tuple with a possible seed for
            the core position fit (e.g. CoG of all telescope images)

        Raises
        ------
        TooFewTelescopesException
            if len(hillas_dict) < 2

        """

        # stereoscopy needs at least two telescopes
        if len(hillas_dict) < 2:
            raise TooFewTelescopesException(
                "need at least two telescopes, have {}".format(
                    len(hillas_dict)))

        self.get_great_circles(hillas_dict, inst.subarray, tel_phi, tel_theta)

        # algebraic direction estimate
        dir, err_est_dir = self.fit_origin_crosses()

        # core position estimate using a geometric approach
        pos, err_est_pos = self.fit_core_crosses()

        # numerical minimisations do not really improve the fit
        # direction estimate using numerical minimisation
        # dir = self.fit_origin_minimise(dir)
        #
        # core position estimate using numerical minimisation
        # pos = self.fit_core_minimise(seed_pos)

        # container class for reconstructed showers
        result = ReconstructedShowerContainer()
        phi, theta = linalg.get_phi_theta(dir).to(u.deg)

        # TODO fix coordinates!
        result.alt, result.az = 90 * u.deg - theta, -phi
        result.core_x = pos[0]
        result.core_y = pos[1]
        result.core_uncert = err_est_pos

        result.tel_ids = [h for h in hillas_dict.keys()]
        result.average_size = np.mean([h.size for h in hillas_dict.values()])
        result.is_valid = True

        result.alt_uncert = err_est_dir
        result.az_uncert = np.nan
        result.h_max = self.fit_h_max(hillas_dict, inst.subarray, tel_phi,
                                      tel_theta)
        result.h_max_uncert = np.nan
        result.goodness_of_fit = np.nan

        return result
    def predict(self, hillas_dict, inst, pointing_alt, pointing_az):
        '''
        The function you want to call for the reconstruction of the
        event. It takes care of setting up the event and consecutively
        calls the functions for the direction and core position
        reconstruction.  Shower parameters not reconstructed by this
        class are set to np.nan

        Parameters
        -----------
        hillas_dict: dict
            dictionary with telescope IDs as key and
            HillasParametersContainer instances as values
        inst : ctapipe.io.InstrumentContainer
            instrumental description
        pointing_alt: dict[astropy.coordinates.Angle]
            dict mapping telescope ids to pointing altitude
        pointing_az: dict[astropy.coordinates.Angle]
            dict mapping telescope ids to pointing azimuth

        Raises
        ------
        TooFewTelescopesException
            if len(hillas_dict) < 2
        '''

        # stereoscopy needs at least two telescopes
        if len(hillas_dict) < 2:
            raise TooFewTelescopesException(
                "need at least two telescopes, have {}".format(
                    len(hillas_dict)))

        self.initialize_hillas_planes(hillas_dict, inst.subarray, pointing_alt,
                                      pointing_az)

        # algebraic direction estimate
        direction, err_est_dir = self.estimate_direction()

        alt = u.Quantity(list(pointing_alt.values()))
        az = u.Quantity(list(pointing_az.values()))
        if np.any(alt != alt[0]) or np.any(az != az[0]):
            raise ValueError('Divergent pointing not supported')

        pointing_direction = SkyCoord(alt=alt[0], az=az[0], frame='altaz')
        # core position estimate using a geometric approach
        core_pos = self.estimate_core_position(hillas_dict, pointing_direction)

        # container class for reconstructed showers
        result = ReconstructedShowerContainer()
        _, lat, lon = cartesian_to_spherical(*direction)

        # estimate max height of shower
        h_max = self.estimate_h_max()

        # astropy's coordinates system rotates counter-clockwise.
        # Apparently we assume it to be clockwise.
        result.alt, result.az = lat, -lon
        result.core_x = core_pos[0]
        result.core_y = core_pos[1]
        result.core_uncert = np.nan

        result.tel_ids = [h for h in hillas_dict.keys()]
        result.average_size = np.mean(
            [h.intensity for h in hillas_dict.values()])
        result.is_valid = True

        result.alt_uncert = err_est_dir
        result.az_uncert = np.nan

        result.h_max = h_max
        result.h_max_uncert = np.nan

        result.goodness_of_fit = np.nan

        return result
    def predict(self, hillas_dict, inst, pointing_alt, pointing_az, seed_pos=(0, 0)):
        """The function you want to call for the reconstruction of the
        event. It takes care of setting up the event and consecutively
        calls the functions for the direction and core position
        reconstruction.  Shower parameters not reconstructed by this
        class are set to np.nan

        Parameters
        -----------
        hillas_dict : python dictionary
            dictionary with telescope IDs as key and
            MomentParameters instances as values
        inst : ctapipe.io.InstrumentContainer
            instrumental description
        pointing_alt:
        pointing_az:
        seed_pos : python tuple
            shape (2) tuple with a possible seed for
            the core position fit (e.g. CoG of all telescope images)

        Raises
        ------
        TooFewTelescopesException
            if len(hillas_dict) < 2

        """

        # stereoscopy needs at least two telescopes
        if len(hillas_dict) < 2:
            raise TooFewTelescopesException(
                "need at least two telescopes, have {}"
                .format(len(hillas_dict)))

        self.inititialize_hillas_planes(
            hillas_dict,
            inst.subarray,
            pointing_alt,
            pointing_az
        )

        # algebraic direction estimate
        direction, err_est_dir = self.estimate_direction()

        # core position estimate using a geometric approach
        pos, err_est_pos = self.estimate_core_position()

        # container class for reconstructed showers
        result = ReconstructedShowerContainer()
        _, lat, lon = cartesian_to_spherical(*direction)

        # estimate max height of shower
        h_max = self.estimate_h_max(hillas_dict, inst.subarray, pointing_alt, pointing_az)


        result.alt, result.az = lat, lon
        result.core_x = pos[0]
        result.core_y = pos[1]
        result.core_uncert = err_est_pos

        result.tel_ids = [h for h in hillas_dict.keys()]
        result.average_size = np.mean([h.size for h in hillas_dict.values()])
        result.is_valid = True

        result.alt_uncert = err_est_dir
        result.az_uncert = np.nan

        result.h_max = h_max
        result.h_max_uncert = np.nan

        result.goodness_of_fit = np.nan

        return result
    def predict(self, hillas_dict, inst, pointing_alt, pointing_az):
        '''
        The function you want to call for the reconstruction of the
        event. It takes care of setting up the event and consecutively
        calls the functions for the direction and core position
        reconstruction.  Shower parameters not reconstructed by this
        class are set to np.nan

        Parameters
        -----------
        hillas_dict: dict
            dictionary with telescope IDs as key and
            HillasParametersContainer instances as values
        inst : ctapipe.io.InstrumentContainer
            instrumental description
        pointing_alt: dict[astropy.coordinates.Angle]
            dict mapping telescope ids to pointing altitude
        pointing_az: dict[astropy.coordinates.Angle]
            dict mapping telescope ids to pointing azimuth

        Raises
        ------
        TooFewTelescopesException
            if len(hillas_dict) < 2
        '''

        # stereoscopy needs at least two telescopes
        if len(hillas_dict) < 2:
            raise TooFewTelescopesException(
                "need at least two telescopes, have {}"
                .format(len(hillas_dict)))

        self.initialize_hillas_planes(
            hillas_dict,
            inst.subarray,
            pointing_alt,
            pointing_az
        )

        # algebraic direction estimate
        direction, err_est_dir = self.estimate_direction()

        alt = u.Quantity(list(pointing_alt.values()))
        az = u.Quantity(list(pointing_az.values()))
        if np.any(alt != alt[0]) or np.any(az != az[0]):
            warnings.warn('Divergent pointing not supported')

        telescope_pointing = SkyCoord(alt=alt[0], az=az[0], frame=HorizonFrame())
        # core position estimate using a geometric approach
        core_pos = self.estimate_core_position(hillas_dict, telescope_pointing)

        # container class for reconstructed showers
        result = ReconstructedShowerContainer()
        _, lat, lon = cartesian_to_spherical(*direction)

        # estimate max height of shower
        h_max = self.estimate_h_max()

        # astropy's coordinates system rotates counter-clockwise.
        # Apparently we assume it to be clockwise.
        result.alt, result.az = lat, -lon
        result.core_x = core_pos[0]
        result.core_y = core_pos[1]
        result.core_uncert = np.nan

        result.tel_ids = [h for h in hillas_dict.keys()]
        result.average_size = np.mean([h.intensity for h in hillas_dict.values()])
        result.is_valid = True

        result.alt_uncert = err_est_dir
        result.az_uncert = np.nan

        result.h_max = h_max
        result.h_max_uncert = np.nan

        result.goodness_of_fit = np.nan

        return result