Exemple #1
0
    def test_hstack(self):
        a1 = ctf.astensor(numpy.ones(4))
        a2 = ctf.astensor(numpy.ones(5))
        self.assertTrue(ctf.hstack((a1, a2)).shape == (9, ))

        a1 = ctf.astensor(numpy.ones((2, 4)))
        a2 = ctf.astensor(numpy.ones((2, 5)))
        self.assertTrue(ctf.hstack((a1, a2)).shape == (2, 9))

        a1 = ctf.astensor(numpy.ones((2, 4)))
        a2 = ctf.astensor(numpy.ones((2, 5)) + 0j)
        self.assertTrue(ctf.hstack((a1, a2)).shape == (2, 9))
        self.assertTrue(ctf.hstack((a1, a2)).dtype == numpy.complex128)

        a1 = numpy.ones((2, 4))
        a2 = ctf.astensor(numpy.ones((2, 5)) + 0j)
        self.assertTrue(ctf.hstack((a1, a2)).shape == (2, 9))
        na2 = numpy.ones((2, 5)) + 0j
        self.assertTrue(
            ctf.all(ctf.hstack((a1, a2)) == numpy.hstack((a1, na2))))

        a1 = ctf.astensor(numpy.ones(4))
        self.assertTrue(ctf.hstack((a1, 1.5)).shape == (5, ))

        a1 = ctf.astensor(numpy.ones((2, 4, 2)))
        a2 = ctf.astensor(numpy.ones((2, 5, 2)))
        self.assertTrue(ctf.hstack((a1, a2)).shape == (2, 9, 2))
Exemple #2
0
    def test_hstack(self):
        a1 = ctf.astensor(numpy.ones(4))
        a2 = ctf.astensor(numpy.ones(5))
        self.assertTrue(ctf.hstack((a1, a2)).shape == (9,))

        a1 = ctf.astensor(numpy.ones((2,4)))
        a2 = ctf.astensor(numpy.ones((2,5)))
        self.assertTrue(ctf.hstack((a1, a2)).shape == (2,9))

        a1 = ctf.astensor(numpy.ones((2,4)))
        a2 = ctf.astensor(numpy.ones((2,5))+0j)
        self.assertTrue(ctf.hstack((a1, a2)).shape == (2,9))
        self.assertTrue(ctf.hstack((a1, a2)).dtype == numpy.complex128)

        a1 = numpy.ones((2,4))
        a2 = ctf.astensor(numpy.ones((2,5))+0j)
        self.assertTrue(ctf.hstack((a1, a2)).shape == (2,9))
        na2 = numpy.ones((2,5))+0j
        self.assertTrue(ctf.all(ctf.hstack((a1, a2)) == numpy.hstack((a1,na2))))

        a1 = ctf.astensor(numpy.ones(4))
        self.assertTrue(ctf.hstack((a1, 1.5)).shape == (5,))

        a1 = ctf.astensor(numpy.ones((2,4,2)))
        a2 = ctf.astensor(numpy.ones((2,5,2)))
        self.assertTrue(ctf.hstack((a1, a2)).shape == (2,9,2))
Exemple #3
0
 def amplitudes_to_vector(self, t1, t2, out=None):
     vector = ctf.hstack((t1.array.ravel(), t2.array.ravel()))
     return vector
Exemple #4
0
def davidson(mult_by_A, N, neig, x0=None, Adiag=None, verbose=4):
    """Diagonalize a matrix via non-symmetric Davidson algorithm.

    mult_by_A() is a function which takes a vector of length N
        and returns a vector of length N.
    neig is the number of eigenvalues requested
    """

    if rank == 0:
        log = lib.logger.Logger(sys.stdout, verbose)
    else:
        log = lib.logger.Logger(sys.stdout, 0)

    cput1 = (time.clock(), time.time())

    Mmin = min(neig, N)
    Mmax = min(N, 2000)
    tol = 1e-6

    def mult(arg):
        return mult_by_A(arg)

    if Adiag is None:
        Adiag = np.zeros(N, np.complex)
        for i in range(N):
            test = np.zeros(N, np.complex)
            test[i] = 1.0
            Adiag[i] = mult(test)[i]
    else:
        Adiag = Adiag.to_nparray()

    idx = Adiag.argsort()
    lamda_k_old = 0
    lamda_k = 0
    target = 0
    conv = False
    if x0 is not None:
        assert x0.shape == (Mmin, N)
        b = x0.copy()
        Ab = tuple([mult(b[m, :]) for m in range(Mmin)])
        Ab = ctf.vstack(Ab).transpose()

    evals = np.zeros(neig, dtype=np.complex)
    evecs = []
    for istep, M in enumerate(range(Mmin, Mmax + 1)):
        if M == Mmin:
            b = ctf.zeros((N, M))
            if rank == 0:
                ind = [i * M + m for m, i in zip(range(M), idx)]
                fill = np.ones(len(ind))
                b.write(ind, fill)
            else:
                b.write([], [])
            Ab = tuple([mult(b[:, m]) for m in range(M)])
            Ab = ctf.vstack(Ab).transpose()

        else:

            Ab = ctf.hstack((Ab, mult(b[:, M - 1]).reshape(N, -1)))

        Atilde = ctf.dot(b.conj().transpose(), Ab)
        Atilde = Atilde.to_nparray()

        lamda, alpha = diagonalize_asymm(Atilde)
        lamda_k_old, lamda_k = lamda_k, lamda[target]
        alpha_k = ctf.astensor(alpha[:, target])
        if M == Mmax:
            break

        q = ctf.dot(Ab - lamda_k * b, alpha_k)
        qnorm = ctf.norm(q)
        log.info(
            'davidson istep = %d  root = %d  E = %.15g  dE = %.9g  residual = %.6g',
            istep, target, lamda_k.real, (lamda_k - lamda_k_old).real, qnorm)
        cput1 = log.timer('davidson iter', *cput1)

        if ctf.norm(q) < tol:
            evecs.append(ctf.dot(b, alpha_k))
            evals[target] = lamda_k
            if target == neig - 1:
                conv = True
                break
            else:
                target += 1
        eps = 1e-10
        xi = q / (lamda_k - Adiag + eps)
        bxi, R = ctf.qr(ctf.hstack((b, xi.reshape(N, -1))))
        nlast = bxi.shape[-1] - 1
        b = ctf.hstack(
            (b, bxi[:, nlast].reshape(N, -1))
        )  #can not replace nlast with -1, (inconsistent between numpy and ctf)
    evecs = ctf.vstack(tuple(evecs))

    return conv, evals, evecs
Exemple #5
0
 def hstack(self, tensors):
     return self.tensor(ctf.hstack(tuple(tsr.unwrap() for tsr in tensors)))
Exemple #6
0
def amplitudes_to_vector(eom, r1, r2):
    vector = ctf.hstack((r1.array.ravel(), r2.array.ravel()))
    return vector