Exemple #1
0
    def test_transpose(self):
        a1 = ctf.zeros((2, 3))
        self.assertTrue(a1.transpose().shape == (3, 2))
        a1 = ctf.zeros((2, 3, 4, 5))
        self.assertTrue(a1.transpose().shape == (5, 4, 3, 2))

        a1 = ctf.zeros((2, 3))
        self.assertTrue(a1.T().shape == (3, 2))
        a1 = ctf.zeros((2, 3, 4, 5))
        self.assertTrue(a1.T().shape == (5, 4, 3, 2))

        a1 = ctf.zeros((2, 3, 4, 5))
        self.assertTrue(a1.transpose((0, 2, 1, -1)).shape == (2, 4, 3, 5))
        self.assertTrue(ctf.transpose(a1, (0, 2, 1, -1)).shape == (2, 4, 3, 5))
        self.assertTrue(a1.transpose(0, -1, 2, 1).shape == (2, 5, 4, 3))
        self.assertTrue(a1.transpose(0, -2, 1, -1).shape == (2, 4, 3, 5))
        self.assertTrue(a1.transpose(-3, -2, 0, -1).shape == (3, 4, 2, 5))
        self.assertTrue(a1.transpose(-3, 0, -1, 2).shape == (3, 2, 5, 4))
        self.assertTrue(a1.transpose(-3, -2, -1, -4).shape == (3, 4, 5, 2))

        # The case which does not change the data ordering in memory.
        # It does not need create new tensor.
        a2 = a1.transpose(0, 1, 2, 3)
        a2[:] = 1
        self.assertTrue(ctf.all(a2 == 1))
        a0 = ctf.zeros((1, 1, 3))
        a2 = a0.transpose(1, 0, 2)
        a0[:] = 1
        self.assertTrue(ctf.all(a0 == 1))

        a1 = ctf.zeros((2, 3, 4, 5))
        with self.assertRaises(ValueError):
            a1.transpose((1, 2))
        with self.assertRaises(ValueError):
            a1.transpose((0, 2, 1, 2))
        with self.assertRaises(ValueError):
            a1.transpose((0, 4, 1, 2))
Exemple #2
0
    def test_transpose(self):
        a1 = ctf.zeros((2,3))
        self.assertTrue(a1.transpose().shape == (3,2))
        a1 = ctf.zeros((2,3,4,5))
        self.assertTrue(a1.transpose().shape == (5,4,3,2))

        a1 = ctf.zeros((2,3))
        self.assertTrue(a1.T().shape == (3,2))
        a1 = ctf.zeros((2,3,4,5))
        self.assertTrue(a1.T().shape == (5,4,3,2))

        a1 = ctf.zeros((2,3,4,5))
        self.assertTrue(a1.transpose((0,2,1,-1)).shape == (2,4,3,5))
        self.assertTrue(ctf.transpose(a1, (0,2,1,-1)).shape == (2,4,3,5))
        self.assertTrue(a1.transpose(0,-1,2,1).shape == (2,5,4,3))
        self.assertTrue(a1.transpose(0,-2,1,-1).shape == (2,4,3,5))
        self.assertTrue(a1.transpose(-3,-2,0,-1).shape == (3,4,2,5))
        self.assertTrue(a1.transpose(-3,0,-1,2).shape == (3,2,5,4))
        self.assertTrue(a1.transpose(-3,-2,-1,-4).shape == (3,4,5,2))

        # The case which does not change the data ordering in memory.
        # It does not need create new tensor.
        a2 = a1.transpose(0,1,2,3)
        a2[:] = 1
        self.assertTrue(ctf.all(a2 == 1))
        a0 = ctf.zeros((1,1,3))
        a2 = a0.transpose(1,0,2)
        a0[:] = 1
        self.assertTrue(ctf.all(a0 == 1))

        a1 = ctf.zeros((2,3,4,5))
        with self.assertRaises(ValueError):
            a1.transpose((1,2))
        with self.assertRaises(ValueError):
            a1.transpose((0,2,1,2))
        with self.assertRaises(ValueError):
            a1.transpose((0,4,1,2))
Exemple #3
0
site_0 = ctf.astensor([[alpha * (np.exp(-s) * Sm - v),
                        np.exp(-s) * Sp, -n, I]])
W.append(site_0)
# Central Sites
for i in range(N - 2):
    site_i = ctf.astensor([[I, z, z, z], [Sm, z, z, z], [v, z, z, z],
                           [z, np.exp(-s) * Sp, -n, I]])
    W.append(site_i)
# Last Site
site_N = ctf.astensor([[I], [Sm], [v], [beta * (np.exp(-s) * Sp - n)]])
W.append(site_N)
##############################################

# Canonicalize MPS ###########################
for i in range(int(N) - 1, 0, -1):
    M_reshape = ctf.transpose(M[i], axes=[1, 0, 2])
    (n1, n2, n3) = M_reshape.shape
    M_reshape = M_reshape.reshape(n1, n2 * n3)
    (U, S, V) = ctf.svd(M_reshape)
    M_reshape = V.reshape(n1, n2, n3)
    M[i] = ctf.transpose(M_reshape, axes=[1, 0, 2])
    M[i - 1] = ctf.einsum('klj,ji,i->kli', M[i - 1], U, S)
##############################################

# Create Environment #########################
print('Generating Environment')
# Allocate empty environment
F = []
tmp = np.array([[[1.]]]) + 0.j
F.append(ctf.from_nparray(tmp))
for i in range(int(N / 2)):
def transpose(A):
    return ctf.transpose(A)
Exemple #5
0
def main():
    t0 = time.time()

    ######## Inputs ##############################
    # SEP Model
    N = 50
    alpha = 0.35  # In at left
    beta = 2. / 3.  # Exit at right
    s = -1.  # Exponential weighting
    gamma = 0.  # Exit at left
    delta = 0.  # In at right
    p = 1.  # Jump right
    q = 0.  # Jump Left
    # Optimization
    tol = 1e-5
    maxIter = 0
    maxBondDim = 10
    useCTF = True
    ##############################################

    # Create MPS #################################
    # PH - Make Isometries, Center Site
    mpiprint('Generating MPS')
    M = []
    for i in range(int(N / 2)):
        tmp = np.random.rand(2,
                             min(2**(i),maxBondDim),
                             min(2**(i+1),maxBondDim))\
                             +0.j
        M.append(ctf.from_nparray(tmp))
    for i in range(int(N / 2))[::-1]:
        tmp = np.random.rand(2,
                             min(2**(i+1),maxBondDim),
                             min(2**i,maxBondDim))\
                             +0.j
        M.append(ctf.from_nparray(tmp))
    ##############################################

    # Create MPO #################################
    mpiprint('Generating MPO')
    # Simple Operators
    Sp = np.array([[0., 1.], [0., 0.]])
    Sm = np.array([[0., 0.], [1., 0.]])
    n = np.array([[0., 0.], [0., 1.]])
    v = np.array([[1., 0.], [0., 0.]])
    I = np.array([[1., 0.], [0., 1.]])
    z = np.array([[0., 0.], [0., 0.]])
    # List to hold MPOs
    W = []
    # First Site
    site_0 = ctf.astensor(
        [[alpha * (np.exp(-s) * Sm - v),
          np.exp(-s) * Sp, -n, I]])
    W.append(site_0)
    # Central Sites
    for i in range(N - 2):
        site_i = ctf.astensor([[I, z, z, z], [Sm, z, z, z], [v, z, z, z],
                               [z, np.exp(-s) * Sp, -n, I]])
        W.append(site_i)
    # Last Site
    site_N = ctf.astensor([[I], [Sm], [v], [beta * (np.exp(-s) * Sp - n)]])
    W.append(site_N)
    ##############################################

    # Canonicalize MPS ###########################
    for i in range(int(N) - 1, 0, -1):
        M_reshape = ctf.transpose(M[i], axes=[1, 0, 2])
        (n1, n2, n3) = M_reshape.shape
        M_reshape = M_reshape.reshape(n1, n2 * n3)
        (U, S, V) = ctf.svd(M_reshape)
        M_reshape = V.reshape(n1, n2, n3)
        M[i] = ctf.transpose(M_reshape, axes=[1, 0, 2])
        M[i - 1] = ctf.einsum('klj,ji,i->kli', M[i - 1], U, S)
    ##############################################

    # Canonicalize MPS ###########################
    def pick_eigs(w, v, nroots, x0):
        idx = np.argsort(np.real(w))
        w = w[idx]
        v = v[:, idx]
        return w, v, idx

    ##############################################

    # Create Environment #########################
    mpiprint('Generating Environment')
    # Allocate empty environment
    F = []
    tmp = np.array([[[1.]]]) + 0.j
    F.append(ctf.from_nparray(tmp))
    for i in range(int(N / 2)):
        tmp = np.zeros((min(2**(i + 1),
                            maxBondDim), 4, min(2**(i + 1), maxBondDim))) + 0.j
        F.append(ctf.from_nparray(tmp))
    for i in range(int(N / 2) - 1, 0, -1):
        tmp = np.zeros(
            (min(2**(i), maxBondDim), 4, min(2**i, maxBondDim))) + 0.j
        F.append(ctf.from_nparray(tmp))
    tmp = np.array([[[1.]]]) + 0.j
    F.append(ctf.from_nparray(tmp))
    # Calculate initial environment
    for i in range(int(N) - 1, 0, -1):
        tmp = ctf.einsum('eaf,cdf->eacd', M[i], F[i + 1])
        tmp = ctf.einsum('ydbe,eacd->ybac', W[i], tmp)
        F[i] = ctf.einsum('bxc,ybac->xya', ctf.conj(M[i]), tmp)
    ##############################################

    # Optimization Sweeps ########################
    converged = False
    iterCnt = 0
    E_prev = 0
    while not converged:
        # Right Sweep ----------------------------
        tr = time.time()
        mpiprint('Start Right Sweep {}'.format(iterCnt))
        for i in range(N - 1):
            (n1, n2, n3) = M[i].shape

            # Make Hx Function
            def Hfun(x):
                x_reshape = ctf.array(x)
                x_reshape = ctf.reshape(x_reshape, (n1, n2, n3))
                tmp = ctf.einsum('ijk,lmk->ijlm', F[i + 1], x_reshape)
                tmp = ctf.einsum('njol,ijlm->noim', W[i], tmp)
                res = ctf.einsum('pnm,noim->opi', F[i], tmp)
                return -ctf.reshape(res, -1).to_nparray()

            def precond(dx, e, x0):
                return dx

            # Set up initial guess
            guess = ctf.reshape(M[i], -1).to_nparray()
            # Run eigenproblem
            u, v = eig(Hfun, guess, precond, pick=pick_eigs)
            E = -u
            v = ctf.array(v)
            M[i] = ctf.reshape(v, (n1, n2, n3))
            # Print Results
            mpiprint('\tEnergy at site {} = {}'.format(i, E))
            # Right Normalize
            M_reshape = ctf.reshape(M[i], (n1 * n2, n3))
            (U, S, V) = ctf.svd(M_reshape)
            M[i] = ctf.reshape(U, (n1, n2, n3))
            M[i + 1] = ctf.einsum('i,ij,kjl->kil', S, V, M[i + 1])
            # Update F
            tmp = ctf.einsum('jlp,ijk->lpik', F[i], ctf.conj(M[i]))
            tmp = ctf.einsum('lmin,lpik->mpnk', W[i], tmp)
            F[i + 1] = ctf.einsum('npq,mpnk->kmq', M[i], tmp)
        mpiprint('Complete Right Sweep {}, {} sec'.format(
            iterCnt,
            time.time() - tr))
        # Left Sweep ------------------------------
        tl = time.time()
        mpiprint('Start Left Sweep {}'.format(iterCnt))
        for i in range(N - 1, 0, -1):
            (n1, n2, n3) = M[i].shape

            # Make Hx Function
            def Hfun(x):
                x_reshape = ctf.array(x)
                x_reshape = ctf.reshape(x_reshape, (n1, n2, n3))
                tmp = ctf.einsum('ijk,lmk->ijlm', F[i + 1], x_reshape)
                tmp = ctf.einsum('njol,ijlm->noim', W[i], tmp)
                res = ctf.einsum('pnm,noim->opi', F[i], tmp)
                return -ctf.reshape(res, -1).to_nparray()

            def precond(dx, e, x0):
                return dx

            # Set up initial guess
            guess = ctf.reshape(M[i], -1).to_nparray()
            # Run eigenproblem
            u, v = eig(Hfun, guess, precond, pick=pick_eigs)
            E = -u
            v = ctf.array(v)
            M[i] = ctf.reshape(v, (n1, n2, n3))
            # Print Results
            mpiprint('\tEnergy at site {}= {}'.format(i, E))
            # Right Normalize
            M_reshape = ctf.transpose(M[i], (1, 0, 2))
            M_reshape = ctf.reshape(M_reshape, (n2, n1 * n3))
            (U, S, V) = ctf.svd(M_reshape)
            M_reshape = ctf.reshape(V, (n2, n1, n3))
            M[i] = ctf.transpose(M_reshape, (1, 0, 2))
            M[i - 1] = ctf.einsum('klj,ji,i->kli', M[i - 1], U, S)
            # Update F
            tmp = ctf.einsum('eaf,cdf->eacd', M[i], F[i + 1])
            tmp = ctf.einsum('ydbe,eacd->ybac', W[i], tmp)
            F[i] = ctf.einsum('bxc,ybac->xya', ctf.conj(M[i]), tmp)
        mpiprint('Left Sweep {}, {} sec'.format(iterCnt, time.time() - tl))
        # Convergence Test -----------------------
        if np.abs(E - E_prev) < tol:
            mpiprint('#' * 75 + '\nConverged at E = {}'.format(E) + '\n' +
                     '#' * 75)
            converged = True
        elif iterCnt > maxIter:
            mpiprint('Convergence not acheived')
            converged = True
        else:
            iterCnt += 1
            E_prev = E
    mpiprint('Total Time = {}'.format(time.time() - t0))
Exemple #6
0
 def inv(matrix):
     U, s, V = ctf.svd(matrix)
     return ctf.dot(ctf.transpose(V),
                    ctf.dot(ctf.diag(s**-1), ctf.transpose(U)))
def transpose(A, axes=None):
    return ctf.transpose(A, axes)
def solve(G, RHS):
    rhs_t = ctf.transpose(RHS)
    out_t = ctf.solve_spd(G, rhs_t)
    out = ctf.transpose(out_t)
    return out