Exemple #1
0
def ctlike_binned(events_name, cntmap_name, emin, emax, enumbins, nxpix, nypix,
                  binsz, ra, dec, IRF, CALDB, outfile):
    """
    Copied and modified from ctools/examples/make_binned_analysis.py
    """
    # Bin the events first
    bin = ctools.ctbin()

    # We need this to explicitely open the log file in Python mode
    bin.logFileOpen()

    bin["evfile"].filename(events_name)
    bin["outfile"].filename(cntmap_name)
    bin["emin"].real(emin)
    bin["emax"].real(emax)
    bin["enumbins"].integer(enumbins)
    bin["nxpix"].integer(nxpix)
    bin["nypix"].integer(nypix)
    bin["binsz"].real(binsz)
    bin["coordsys"].string('GAL')
    bin["xref"].real(ra)
    bin["yref"].real(dec)
    bin["proj"].string('CAR')
    bin.execute()

    # Perform maximum likelihood fitting
    like = ctools.ctlike()
    like.logFileOpen()
    like["infile"].filename(cntmap_name)
    like["srcmdl"].filename('$CTOOLS/share/models/crab.xml')
    like["outmdl"].filename(outfile)
    like["caldb"].string(CALDB)
    like["irf"].string(IRF)
    like.execute()
Exemple #2
0
    def ctbin(self,obsXml= None, log=False,debug=False, **kwargs):
        '''
        Create ctbin instance with given parameters
        Parameters
        ---------
        log  : save or not the log file
        debug  : debug mode or not. This will print a lot of information
        '''
        self.info("Running ctbin to create count map")

        self.bin = ct.ctbin()

        self._fill_app( self.bin,log=log,debug=debug, **kwargs)
        self.bin["outcube"] = join(self.outdir,self.config['file']["cntcube"])

        if self.verbose:
            print self.bin

        # Run ctbin application. This will loop over all observations in
        # the container and bin the events in counts maps
        self.bin.run()

        self.bin.save()
        self.info("Saved counts cube to {0:s}".format(self.bin["outcube"]))

        self.bin
def ctlike_binned(events_name, cntmap_name, emin, emax,
                  enumbins, nxpix, nypix, binsz, ra, dec, IRF, CALDB, outfile):
    """
    Copied and modified from ctools/examples/make_binned_analysis.py
    """
    # Bin the events first
    bin = ctools.ctbin()

    # We need this to explicitely open the log file in Python mode
    bin.logFileOpen()

    bin["evfile"].filename(events_name)
    bin["outfile"].filename(cntmap_name)
    bin["emin"].real(emin)
    bin["emax"].real(emax)
    bin["enumbins"].integer(enumbins)
    bin["nxpix"].integer(nxpix)
    bin["nypix"].integer(nypix)
    bin["binsz"].real(binsz)
    bin["coordsys"].string('GAL')
    bin["xref"].real(ra)
    bin["yref"].real(dec)
    bin["proj"].string('CAR')
    bin.execute()

    # Perform maximum likelihood fitting
    like = ctools.ctlike()
    like.logFileOpen()
    like["infile"].filename(cntmap_name)
    like["srcmdl"].filename('$CTOOLS/share/models/crab.xml')
    like["outmdl"].filename(outfile)
    like["caldb"].string(CALDB)
    like["irf"].string(IRF)
    like.execute()
Exemple #4
0
def ctbinning_run(ev_file, force=0):
    working_dir = os.path.dirname(ev_file)
    cnt_file = os.path.join(working_dir, "cntcube.fits")
    log_file = os.path.join(working_dir, "ctbin.log")
    if not os.path.isfile(cnt_file) or force == 1:
        binning = ctools.ctbin()
        binning.clear()
        binning["inobs"] = ev_file
        binning["outobs"] = cnt_file
        binning["xref"] = OBJ["ra"]
        binning["yref"] = OBJ["dec"]
        binning["ebinalg"] = "LOG"
        binning["emin"] = ENERGY["min"]
        binning["emax"] = ENERGY["max"]
        binning["enumbins"] = 20
        binning["nxpix"] = 500
        binning["nypix"] = 500
        binning["binsz"] = 0.01
        binning["coordsys"] = "CEL"
        binning["proj"] = "CAR"
        binning["logfile"] = log_file
        binning.logFileOpen()
        binning.run()
        binning.save()
        sys.stderr.write("File '%s' created.\n" % cnt_file)
    return cnt_file
Exemple #5
0
    def ctbin(self, log=False, debug=False):
        '''
        Create ctbin instance with given parameters
        Parameters
        ---------
        log  : save or not the log file
        debug  : debug mode or not. This will print a lot of information
        '''
        self.info("Running ctbin to create count map")
        if self.m_obs:
            bin = ct.ctbin(self.m_obs)
        else:
            bin = ct.ctbin()

            for k in self.config.keys():
                try:
                    for kk in self.config[k].keys():
                        if bin._has_par(kk):
                            bin[kk] = self.config[k][kk]
                except:
                    if bin._has_par(k):
                        bin[k] = self.config[k]

            bin["inobs"] = join(self.workdir,
                                self.config['file']["selectedevent"])
            bin["outcube"] = join(self.workdir, self.config['file']["cube"])

        # Optionally open the log file
        if log:
            bin.logFileOpen()

        # Optionally switch-on debugging model
        if debug:
            bin["debug"].boolean(True)

        if self.verbose:
            print bin

        # Run ctbin application. This will loop over all observations in
        # the container and bin the events in counts maps
        bin.run()
        bin.save()
        if self.m_obs:
            # Make a deep copy of the observation that will be returned
            # (the ctbin object will go out of scope one the function is
            # left)
            self.m_obs = bin.obs().copy()
Exemple #6
0
def run_pipeline(obs, emin=0.1, emax=100.0,
                 enumbins=20, nxpix=200, nypix=200, binsz=0.02,
                 coordsys="CEL", proj="CAR", debug=False):
    """
    Simulation and binned analysis pipeline.

    Keywords:
     emin     - Minimum energy of cube [TeV] (default: 0.1)
     emax     - Maximum energy of cube [TeV] (default: 100.0)
     enumbins - Number of energy bins in cube (default: 20)
     nxpix    - Number of RA pixels in cube (default: 200)
     nypix    - Number of DEC pixels in cube (default: 200)
     binsz    - Spatial cube bin size [deg] (default: 0.02)
     coordsys - Cube coordinate system (CEL or GAL)
     proj     - Cube World Coordinate System (WCS) projection
     debug    - Enable debugging (default: False)
    """
    # Simulate events
    sim = ctools.ctobssim(obs)
    sim["debug"] = debug
    sim.run()

    # Bin events by looping over all observations in the container
    obs = gammalib.GObservations()
    obs.models(sim.obs().models())
    for run in sim.obs():

        # Create container with a single observation
        container = gammalib.GObservations()
        container.append(run)

        # Bin events for that observation
        bin = ctools.ctbin(container)
        bin["ebinalg"]  = "LOG"
        bin["emin"]     = emin
        bin["emax"]     = emax
        bin["enumbins"] = enumbins
        bin["nxpix"]    = nxpix
        bin["nypix"]    = nypix
        bin["binsz"]    = binsz
        bin["coordsys"] = coordsys
        bin["usepnt"]   = True
        bin["proj"]     = proj
        bin.run()

        # Append result to observations
        obs.extend(bin.obs())

    # Perform maximum likelihood fitting
    like = ctools.ctlike(obs)
    like["debug"] = True # Switch this always on for results in console
    like.run()

    # Return
    return
def create_cntcube(obs, emin=None, emax=None, ebins=20, npix=200, binsz=0.02):
    """
    Create counts cube

    Parameters
    ----------
    obs : `~gammalib.GObservations`
        Observation container
    emin : float, optional
        Minimum energy (TeV)
    emax : float, optional
        Maximum energy (TeV)
    ebins : int, optional
        Number of energy bins
    npix : int, optional
        Number of spatial pixels in x and y
    binsz : float, optional
        Spatial pixels bin size (deg)

    Returns
    -------
    cntcube : `~gammalib.GCTAEventCube`
        Counts cube
    """
    # Get energy range for observation
    if emin == None:
        emin = obs[0].ebounds().emin().TeV()
    if emax == None:
        emax = obs[0].ebounds().emax().TeV()

    # Setup task parameters
    ctbin = ctools.ctbin(obs)
    ctbin['ebinalg'] = 'LOG'
    ctbin['emin'] = emin
    ctbin['emax'] = emax
    ctbin['enumbins'] = ebins
    ctbin['coordsys'] = 'CEL'
    ctbin['proj'] = 'TAN'
    ctbin['usepnt'] = True
    ctbin['nxpix'] = npix
    ctbin['nypix'] = npix
    ctbin['binsz'] = binsz

    # Generate counts cube
    ctbin.run()

    # Extract counts cube
    cntcube = ctbin.cube().copy()

    # Return counts cube
    return cntcube
Exemple #8
0
    def ctbin(self,log=False,debug=False):
        # ctbin application and set parameters
        self.validate()
        self.info("Running ctbin to create count map")
        if self.m_obs:
            bin = ct.ctbin(self.m_obs)
        else:
            bin = ct.ctbin()
            bin["evfile"] = self.m_evtfile
        bin["outfile"] = self.m_cntfile
        bin["ebinalg"].string(self.m_ebinalg)
        bin["emin"].real(self.m_emin)
        bin["emax"].real(self.m_emax)
        Nbdecade = log10(self.m_emax)-log10(self.m_emin)#Compute the number of decade
        bin["enumbins"].integer(int(self.m_enumbins*Nbdecade))
        bin["usepnt"].boolean(self.m_usepnt) # Use pointing for map centre
        bin["nxpix"].integer(self.m_nxpix)
        bin["nypix"].integer(self.m_nypix)
        bin["binsz"].real(self.m_binsz)
        bin["coordsys"].string(self.m_coordsys)
        bin["proj"].string(self.m_proj)
        
        # Optionally open the log file
        if log:
            bin.logFileOpen()

        # Optionally switch-on debugging model
        if debug:
            bin["debug"].boolean(True)

        # Run ctbin application. This will loop over all observations in
        # the container and bin the events in counts maps
        bin.execute()
        if self.m_obs:
            # Make a deep copy of the observation that will be returned
            # (the ctbin object will go out of scope one the function is
            # left)
            self.m_obs = bin.obs().copy()
def sim(src="cCrab"):  #bkg, Crabbkg
    "Simulates acceptance ccube and model cube"
    print 30 * "-" + "\n", "Simulating", src + "\n" + 30 * "-"
    #Simulate observation
    sim = ctools.ctobssim()
    sim["inmodel"] = modeldir + src + ".xml"
    sim["outevents"] = outdir + "events_" + src + ".fits"
    sim["caldb"] = caldb
    sim["irf"] = irf
    sim["ra"] = ra
    sim["dec"] = dec
    sim["rad"] = 10.0
    sim["tmin"] = 0.0
    sim["tmax"] = tsim
    sim["emin"] = emin
    sim["emax"] = emax
    sim["edisp"] = False
    sim.execute()

    #Bin data into a cube
    ctbin = ctools.ctbin()
    ctbin["inobs"] = outdir + "events_" + src + ".fits"
    ctbin["outcube"] = outdir + "ccube_" + src + ".fits"
    ctbin["ebinalg"] = "LOG"
    ctbin["emin"] = emin
    ctbin["emax"] = emax
    ctbin["enumbins"] = enumbins
    ctbin["nxpix"] = npix
    ctbin["nypix"] = npix
    ctbin["binsz"] = binsz
    ctbin["coordsys"] = "CEL"
    ctbin["xref"] = ra
    ctbin["yref"] = dec
    ctbin["proj"] = "AIT"
    ctbin.execute()

    #Create model cube
    ctmodel = ctools.ctmodel()
    ctmodel["inobs"] = outdir + "events_" + src + ".fits"
    ctmodel["inmodel"] = modeldir + src + ".xml"
    ctmodel["incube"] = outdir + "ccube_" + src + ".fits"
    ctmodel["caldb"] = "prod2"
    ctmodel["caldb"] = caldb
    ctmodel["irf"] = irf
    ctmodel["outcube"] = outdir + "mcube_" + src + ".fits"
    ctmodel["edisp"] = False
    ctmodel.execute()
Exemple #10
0
def create_count_cube():
    """
    Create counts cube
    """
    # Allocate ctbin application and set parameters
    bin = ctools.ctbin()
    bin['inobs'] = 'test/data/crab_events.fits'
    bin['outcube'] = 'test/data/crab_cntmap.fits'
    bin['ebinalg'] = 'LOG'
    bin['emin'] = 1.0
    bin['emax'] = 100.0
    bin['enumbins'] = 5
    bin['usepnt'] = True  # Use pointing for map centre
    bin['nxpix'] = 20
    bin['nypix'] = 20
    bin['binsz'] = 0.2
    bin['coordsys'] = 'CEL'
    bin['proj'] = 'TAN'
    bin.execute()

    # Return
    return
Exemple #11
0
    def test_functional(self):
        """
        Test ctbin functionnality.
        """
        # Set-up ctbin
        bin = ctools.ctbin()
        bin["inobs"]    = self.events_name
        bin["outcube"]  = "cntmap.fits"
        bin["ebinalg"]  = "LOG"
        bin["emin"]     = 0.1
        bin["emax"]     = 100.0
        bin["enumbins"] = 20
        bin["nxpix"]    = 200
        bin["nypix"]    = 200
        bin["binsz"]    = 0.02
        bin["coordsys"] = "CEL"
        bin["proj"]     = "CAR"
        bin["xref"]     = 83.63
        bin["yref"]     = 22.01

        # Run tool
        self.test_try("Run ctbin")
        try:
            bin.run()
            self.test_try_success()
        except:
            self.test_try_failure("Exception occured in ctbin.")

        # Save counts cube
        self.test_try("Save counts cube")
        try:
            bin.save()
            self.test_try_success()
        except:
            self.test_try_failure("Exception occured in saving counts cube.")

        # Return
        return
Exemple #12
0
    def test_functional(self):
        """
        Test ctbin functionnality.
        """
        # Set-up ctbin
        bin = ctools.ctbin()
        bin["inobs"].filename(self.events_name)
        bin["outcube"].filename("cntmap.fits")
        bin["ebinalg"].string("LOG")
        bin["emin"].real(0.1)
        bin["emax"].real(100.0)
        bin["enumbins"].integer(20)
        bin["nxpix"].integer(200)
        bin["nypix"].integer(200)
        bin["binsz"].real(0.02)
        bin["coordsys"].string("CEL")
        bin["proj"].string("CAR")
        bin["xref"].real(83.63)
        bin["yref"].real(22.01)

        # Run tool
        self.test_try("Run ctbin")
        try:
            bin.run()
            self.test_try_success()
        except:
            self.test_try_failure("Exception occured in ctbin.")

        # Save counts cube
        self.test_try("Save counts cube")
        try:
            bin.save()
            self.test_try_success()
        except:
            self.test_try_failure("Exception occured in saving counts cube.")

        # Return
        return
Exemple #13
0
def binData(cfg):
    """
    bin data with ctbin
    """
    outputdir = cfg.getValue('general', 'outputdir')
    if cfg.getValue('general', 'anatype') == 'binned':
        bdata = ctools.ctbin()
        bdata["inobs"] = outputdir + '/' + cfg.getValue('ctselect', 'output')
        bdata["outcube"] = outputdir + '/' + cfg.getValue('ctbin', 'output')
        bdata["ebinalg"] = "LOG"
        bdata["emin"] = cfg.getValue('ctselect', 'emin')
        bdata["emax"] = cfg.getValue('ctselect', 'emax')
        bdata["enumbins"] = cfg.getValue('ctbin', 'enumbins')
        bdata["nxpix"] = cfg.getValue('ctbin', 'nxpix')
        bdata["nypix"] = cfg.getValue('ctbin', 'nypix')
        bdata["binsz"] = cfg.getValue('ctbin', 'binsz')
        bdata["coordsys"] = "CEL"
        bdata["proj"] = "AIT"
        bdata["xref"] = cfg.getValue('model', 'coords', 'ra')
        bdata["yref"] = cfg.getValue('model', 'coords', 'dec')
        if cfg.getValue('general', 'debug') is True:
            bdata["debug"] = True
        bdata.run()
        bdata.save()
def stacked_pipeline(model_name, duration):
    """
    Stacked analysis pipeline.
    """
    # Set script parameters
    caldb       = "prod2"
    irf         = "South_50h"
    ra          =   83.63
    dec         =   22.01
    rad_sim     =   10.0
    tstart      =    0.0
    tstop       = duration
    emin        =    0.1
    emax        =  100.0
    enumbins    =   40
    nxpix       =  200
    nypix       =  200
    binsz       =    0.02
    coordsys    = "CEL"
    proj        = "CAR"

    # Get start CPU time
    cpu_start = time.clock()

    # Simulate events
    sim = ctools.ctobssim()
    sim["inmodel"] = model_name
    sim["caldb"]   = caldb
    sim["irf"]     = irf
    sim["ra"]      = ra
    sim["dec"]     = dec
    sim["rad"]     = rad_sim
    sim["tmin"]    = tstart
    sim["tmax"]    = tstop
    sim["emin"]    = emin
    sim["emax"]    = emax
    sim.run()

    # Bin events into counts map
    bin = ctools.ctbin(sim.obs())
    bin["ebinalg"]  = "LOG"
    bin["emin"]     = emin
    bin["emax"]     = emax
    bin["enumbins"] = enumbins
    bin["nxpix"]    = nxpix
    bin["nypix"]    = nypix
    bin["binsz"]    = binsz
    bin["coordsys"] = coordsys
    bin["proj"]     = proj
    bin["xref"]     = ra
    bin["yref"]     = dec
    bin.run()

    # Create exposure cube
    expcube = ctools.ctexpcube(sim.obs())
    expcube["incube"]   = "NONE"
    expcube["caldb"]    = caldb
    expcube["irf"]      = irf
    expcube["ebinalg"]  = "LOG"
    expcube["emin"]     = emin
    expcube["emax"]     = emax
    expcube["enumbins"] = enumbins
    expcube["nxpix"]    = nxpix
    expcube["nypix"]    = nypix
    expcube["binsz"]    = binsz
    expcube["coordsys"] = coordsys
    expcube["proj"]     = proj
    expcube["xref"]     = ra
    expcube["yref"]     = dec
    expcube.run()

    # Create PSF cube
    psfcube = ctools.ctpsfcube(sim.obs())
    psfcube["incube"]   = "NONE"
    psfcube["caldb"]    = caldb
    psfcube["irf"]      = irf
    psfcube["ebinalg"]  = "LOG"
    psfcube["emin"]     = emin
    psfcube["emax"]     = emax
    psfcube["enumbins"] = enumbins
    psfcube["nxpix"]    = 10
    psfcube["nypix"]    = 10
    psfcube["binsz"]    = 1.0
    psfcube["coordsys"] = coordsys
    psfcube["proj"]     = proj
    psfcube["xref"]     = ra
    psfcube["yref"]     = dec
    psfcube.run()

    # Create background cube
    bkgcube = ctools.ctbkgcube(sim.obs())
    bkgcube["incube"]   = "NONE"
    bkgcube["ebinalg"]  = "LOG"
    bkgcube["emin"]     = emin
    bkgcube["emax"]     = emax
    bkgcube["enumbins"] = enumbins
    bkgcube["nxpix"]    = 10
    bkgcube["nypix"]    = 10
    bkgcube["binsz"]    = 1.0
    bkgcube["coordsys"] = coordsys
    bkgcube["proj"]     = proj
    bkgcube["xref"]     = ra
    bkgcube["yref"]     = dec
    bkgcube.run()

    # Attach background model to observation container
    bin.obs().models(bkgcube.models())

    # Set Exposure and Psf cube for first CTA observation
    # (ctbin will create an observation with a single container)
    bin.obs()[0].response(expcube.expcube(), psfcube.psfcube(), bkgcube.bkgcube())

    # Get ctlike start CPU time
    cpu_ctlike = time.clock()

    # Perform maximum likelihood fitting
    like = ctools.ctlike(bin.obs())
    like.run()

    # Get stop CPU time and compute elapsed times
    cpu_stop    = time.clock()
    cpu_elapsed = cpu_stop - cpu_start
    cpu_ctlike  = cpu_stop - cpu_ctlike

    # Return
    return cpu_elapsed, cpu_ctlike
Exemple #15
0
    def run(self):
        """
        Run the script.
        """
        # Switch screen logging on in debug mode
        if self._logDebug():
            self._log.cout(True)

        # Get parameters
        self._get_parameters()

        # Write observation into logger
        if self._logTerse():
            self._log("\n")
            self._log.header1("Observation")
            self._log(str(self._obs))
            self._log("\n")

        # Use input file directly if given
        if self._use_maps:
            countmap = gammalib.GSkyMap(self["inobs"].filename())
            modelmap = gammalib.GSkyMap(self._modcube)

        else:

            # ...
            if self._skip_binning:
                cta_counts_cube = gammalib.GCTAEventCube(self._obs[0].events().clone())   

            # ...
            else:

                # Write header
                if self._logTerse():
                    self._log("\n")
                    self._log.header1("Generate binned map (ctbin)")

                # Create countsmap
                bin = ctools.ctbin(self._obs)
                bin["nxpix"].integer(self._nxpix)
                bin["nypix"].integer(self._nypix)
                bin["proj"].string(self._proj)
                bin["coordsys"].string(self._coordsys)
                bin["xref"].real(self._xref)
                bin["yref"].real(self._yref)
                bin["enumbins"].integer(self._enumbins)
                bin["ebinalg"].string(self._ebinalg)
                bin["emin"].real(self._emin)
                bin["emax"].real(self._emax)
                bin["binsz"].real(self._binsz)
                bin["chatter"].integer(self._chatter)
                bin["clobber"].boolean(self._clobber)
                bin["debug"].boolean(self._debug)
                bin.run()

                # Retrieve counts cube
                cta_counts_cube = bin.cube()

            # Assign GCTAEventCube to skymap
            countmap = cta_counts_cube.counts()

            # Write header
            if self._logTerse():
                self._log("\n")
                self._log.header1("Generate model map (ctmodel)")

            # Create model map
            model = ctools.ctmodel(self._obs)
            model.cube(cta_counts_cube)
            model["chatter"].integer(self._chatter)
            model["clobber"].boolean(self._clobber)
            model["debug"].boolean(self._debug)
            model["edisp"].boolean(self._edisp)
            model.run()

            # Get model map into GSkyMap object
            modelmap = model.cube().counts().copy()

        # Store counts map as residual map. Note that we need a
        # special construct here to avoid memory leaks. This seems
        # to be a SWIG feature as SWIG creates a new object when
        # calling bin.cube()
        #residualmap = bin.cube().counts()
        self._resmap = countmap.copy()
        self._resmap.stack_maps()
        modelmap.stack_maps()

        # Continue calculations depending on given algorithm
        if self._algorithm == "SUB":

            # Subtract maps 
            self._resmap -= modelmap

        elif self._algorithm == "SUBDIV":

            # Subtract and divide by model map
            self._resmap -= modelmap
            self._resmap /= modelmap
            #for pixel in modelmap:
            #    if pixel != 0.0:
            #        pixel = 1.0/pixel
            #self._resmap *= modelmap

        elif self._algorithm == "SUBDIVSQRT":

            # subtract and divide by sqrt of model map
            self._resmap -= modelmap
            self._resmap /= modelmap.sqrt()
            #for pixel in modelmap:
            #    if pixel != 0.0:
            #        pixel = 1.0/math.sqrt(pixel)
            #self._resmap *= modelmap

        else:

            # Raise error if algorithm is unkown
            raise TypeError("Algorithm \""+self._algorithm+"\" not known")

        # Optionally publish map
        if self._publish:
            self.publish()

        # Return
        return
def stacked_pipeline(duration):
    """
    Cube-style analysis pipeline.
    """
    # Set script parameters
    model_name  = "${CTOOLS}/share/models/crab.xml"
    caldb       = "prod2"
    irf         = "South_50h"
    ra          =   83.63
    dec         =   22.01
    rad_sim     =   10.0
    tstart      =    0.0
    tstop       = duration
    emin        =    0.1
    emax        =  100.0
    enumbins    =   20
    nxpix       =  200
    nypix       =  200
    binsz       =    0.02
    coordsys    = "CEL"
    proj        = "CAR"

    # Get start CPU time
    tstart = time.clock()

    # Simulate events
    sim = ctools.ctobssim()
    sim["inmodel"].filename(model_name)
    sim["caldb"].string(caldb)
    sim["irf"].string(irf)
    sim["ra"].real(ra)
    sim["dec"].real(dec)
    sim["rad"].real(rad_sim)
    sim["tmin"].real(tstart)
    sim["tmax"].real(tstop)
    sim["emin"].real(emin)
    sim["emax"].real(emax)
    sim.run()

    # Bin events into counts map
    bin = ctools.ctbin(sim.obs())
    bin["ebinalg"].string("LOG")
    bin["emin"].real(emin)
    bin["emax"].real(emax)
    bin["enumbins"].integer(enumbins)
    bin["nxpix"].integer(nxpix)
    bin["nypix"].integer(nypix)
    bin["binsz"].real(binsz)
    bin["coordsys"].string(coordsys)
    bin["proj"].string(proj)
    bin["xref"].real(ra)
    bin["yref"].real(dec)
    bin.run()

    # Create exposure cube
    expcube = ctools.ctexpcube(sim.obs())
    expcube["incube"].filename("NONE")
    expcube["caldb"].string(caldb)
    expcube["irf"].string(irf)
    expcube["ebinalg"].string("LOG")
    expcube["emin"].real(emin)
    expcube["emax"].real(emax)
    expcube["enumbins"].integer(enumbins)
    expcube["nxpix"].integer(nxpix)
    expcube["nypix"].integer(nypix)
    expcube["binsz"].real(binsz)
    expcube["coordsys"].string(coordsys)
    expcube["proj"].string(proj)
    expcube["xref"].real(ra)
    expcube["yref"].real(dec)
    expcube.run()

    # Create PSF cube
    psfcube = ctools.ctpsfcube(sim.obs())
    psfcube["incube"].filename("NONE")
    psfcube["caldb"].string(caldb)
    psfcube["irf"].string(irf)
    psfcube["ebinalg"].string("LOG")
    psfcube["emin"].real(emin)
    psfcube["emax"].real(emax)
    psfcube["enumbins"].integer(enumbins)
    psfcube["nxpix"].integer(10)
    psfcube["nypix"].integer(10)
    psfcube["binsz"].real(1.0)
    psfcube["coordsys"].string(coordsys)
    psfcube["proj"].string(proj)
    psfcube["xref"].real(ra)
    psfcube["yref"].real(dec)
    psfcube.run()

    # Create background cube
    bkgcube = ctools.ctbkgcube(sim.obs())
    bkgcube["incube"].filename("NONE")
    bkgcube["ebinalg"].string("LOG")
    bkgcube["emin"].real(emin)
    bkgcube["emax"].real(emax)
    bkgcube["enumbins"].integer(enumbins)
    bkgcube["nxpix"].integer(10)
    bkgcube["nypix"].integer(10)
    bkgcube["binsz"].real(1.0)
    bkgcube["coordsys"].string(coordsys)
    bkgcube["proj"].string(proj)
    bkgcube["xref"].real(ra)
    bkgcube["yref"].real(dec)
    bkgcube.run()

    # Attach background model to observation container
    bin.obs().models(bkgcube.models())

    # Set Exposure and Psf cube for first CTA observation
    # (ctbin will create an observation with a single container)
    bin.obs()[0].response(expcube.expcube(), psfcube.psfcube(), bkgcube.bkgcube())

    # Get ctlike start CPU time
    tctlike = time.clock()

    # Perform maximum likelihood fitting
    like = ctools.ctlike(bin.obs())
    like.run()

    # Get stop CPU time
    tstop    = time.clock()
    telapsed = tstop - tstart
    tctlike  = tstop - tctlike
	
    # Return
    return telapsed, tctlike
Exemple #17
0
#Move observations to destination folder.Observations are simulated and stored in the present folder, but I prefer to store them somewhere else, so I move them there.

for src_dir, dirs, files in os.walk(PATH_HERE):
    dst_dir = PATH_OBS
    if not os.path.exists(dst_dir):
        os.makedirs(dst_dir)
    for file in files:
        src_file = os.path.join(PATH_HERE, file)
        dst_file = os.path.join(PATH_OBS, file)
        if file.endswith('.fits'):
            if os.path.exists(dst_file):
                os.remove(dst_file)
            shutil.move(src_file, PATH_OBS)

# BIN THE DATA
binn = ctools.ctbin()
binn["inobs"] = outfile
binn["outcube"] = cntcube
binn["coordsys"] = "CEL"
binn["proj"] = "CAR"
binn["ebinalg"] = "LOG"
binn["xref"] = centerx
binn["yref"] = centery
binn["nxpix"] = nxpix
binn["nypix"] = nypix
binn["binsz"] = binsz
binn["enumbins"] = enumbins
binn["emin"] = emin
binn["emax"] = emax
binn["debug"] = True
binn.execute()
def run_pipeline(obs,
                 ra=83.63,
                 dec=22.01,
                 emin=0.1,
                 emax=100.0,
                 enumbins=20,
                 nxpix=200,
                 nypix=200,
                 binsz=0.02,
                 coordsys='CEL',
                 proj='CAR',
                 model='data/crab.xml',
                 caldb='prod2',
                 irf='South_0.5h',
                 debug=False):
    """
    Simulation and stacked analysis pipeline

    Parameters
    ----------
    obs : `~gammalib.GObservations`
        Observation container
    ra : float, optional
        Right Ascension of counts cube centre (deg)
    dec : float, optional
        Declination of Region of counts cube centre (deg)
    emin : float, optional
        Minimum energy (TeV)
    emax : float, optional
        Maximum energy (TeV)
    enumbins : int, optional
        Number of energy bins
    nxpix : int, optional
        Number of pixels in X axis
    nypix : int, optional
        Number of pixels in Y axis
    binsz : float, optional
        Pixel size (deg)
    coordsys : str, optional
        Coordinate system
    proj : str, optional
        Coordinate projection
    model : str, optional
        Model definition XML file
    caldb : str, optional
        Calibration database path
    irf : str, optional
        Instrument response function
    debug : bool, optional
        Debug function
    """
    # Simulate events
    sim = ctools.ctobssim(obs)
    sim['debug'] = debug
    sim['outevents'] = 'obs.xml'
    sim.execute()

    # Bin events into counts map
    bin = ctools.ctbin()
    bin['inobs'] = 'obs.xml'
    bin['outcube'] = 'cntcube.fits'
    bin['ebinalg'] = 'LOG'
    bin['emin'] = emin
    bin['emax'] = emax
    bin['enumbins'] = enumbins
    bin['nxpix'] = nxpix
    bin['nypix'] = nypix
    bin['binsz'] = binsz
    bin['coordsys'] = coordsys
    bin['proj'] = proj
    bin['xref'] = ra
    bin['yref'] = dec
    bin['debug'] = debug
    bin.execute()

    # Create exposure cube
    expcube = ctools.ctexpcube()
    expcube['inobs'] = 'obs.xml'
    expcube['incube'] = 'cntcube.fits'
    expcube['outcube'] = 'expcube.fits'
    expcube['caldb'] = caldb
    expcube['irf'] = irf
    expcube['ebinalg'] = 'LOG'
    expcube['emin'] = emin
    expcube['emax'] = emax
    expcube['enumbins'] = enumbins
    expcube['nxpix'] = nxpix
    expcube['nypix'] = nypix
    expcube['binsz'] = binsz
    expcube['coordsys'] = coordsys
    expcube['proj'] = proj
    expcube['xref'] = ra
    expcube['yref'] = dec
    expcube['debug'] = debug
    expcube.execute()

    # Create PSF cube
    psfcube = ctools.ctpsfcube()
    psfcube['inobs'] = 'obs.xml'
    psfcube['incube'] = 'NONE'
    psfcube['outcube'] = 'psfcube.fits'
    psfcube['caldb'] = caldb
    psfcube['irf'] = irf
    psfcube['ebinalg'] = 'LOG'
    psfcube['emin'] = emin
    psfcube['emax'] = emax
    psfcube['enumbins'] = enumbins
    psfcube['nxpix'] = 10
    psfcube['nypix'] = 10
    psfcube['binsz'] = 1.0
    psfcube['coordsys'] = coordsys
    psfcube['proj'] = proj
    psfcube['xref'] = ra
    psfcube['yref'] = dec
    psfcube['debug'] = debug
    psfcube.execute()

    # Create background cube
    bkgcube = ctools.ctbkgcube()
    bkgcube['inobs'] = 'obs.xml'
    bkgcube['inmodel'] = model
    bkgcube['incube'] = 'NONE'
    bkgcube['outcube'] = 'bkgcube.fits'
    bkgcube['outmodel'] = 'model_bkg.xml'
    bkgcube['caldb'] = caldb
    bkgcube['irf'] = irf
    bkgcube['ebinalg'] = 'LOG'
    bkgcube['emin'] = emin
    bkgcube['emax'] = emax
    bkgcube['enumbins'] = enumbins
    bkgcube['nxpix'] = 10
    bkgcube['nypix'] = 10
    bkgcube['binsz'] = 1.0
    bkgcube['coordsys'] = coordsys
    bkgcube['proj'] = proj
    bkgcube['xref'] = ra
    bkgcube['yref'] = dec
    bkgcube['debug'] = debug
    bkgcube.execute()

    # Perform maximum likelihood fitting
    like = ctools.ctlike()
    like['inobs'] = 'cntcube.fits'
    like['inmodel'] = 'model_bkg.xml'
    like['outmodel'] = 'fit_results.xml'
    like['expcube'] = 'expcube.fits'
    like['psfcube'] = 'psfcube.fits'
    like['bkgcube'] = 'bkgcube.fits'
    like['caldb'] = caldb
    like['irf'] = irf
    like['debug'] = True  # Switch this always on for results in console
    like.execute()

    # Return
    return
Exemple #19
0
def sim(obs, log=False, debug=False, chatter=2, edisp=False, seed=0,
        emin=None, emax=None, nbins=0, onsrc=None, onrad=0.2, addbounds=False,
        binsz=0.05, npix=200, proj='TAN', coord='GAL'):
    """
    Simulate events for all observations in the container

    Simulate events for all observations using ctobssim. If the number of
    energy bins is positive, the events are binned into a counts cube using
    ctbin. If multiple observations are simulated, the counts cube is a
    stacked cube and the corresponding response cubes are computed using
    ctexpcube, ctpsfcube, ctbkgcube and optionally ctedispcube. The response
    cubes are attached to the first observation in the container, which
    normally is the observation with the counts cube.

    Parameters
    ----------
    obs : `~gammalib.GObservations`
        Observation container without events
    log : bool, optional
        Create log file(s)
    debug : bool, optional
        Create console dump?
    chatter : int, optional
        Chatter level
    edisp : bool, optional
        Apply energy dispersion?
    seed : int, optional
        Seed value for simulations
    emin : float, optional
        Minimum energy of counts cube for binned (TeV)
    emax : float, optional
        Maximum energy of counts cube for binned (TeV)
    nbins : int, optional
        Number of energy bins (0=unbinned)
    onsrc : str, optional
        Name of source for On region (None if no On/Off obs. is used)
    onrad : float, optional
        Radius for On region (deg)
    addbounds : bool, optional
        Add boundaries at observation energies
    binsz : float, optional
        Pixel size for binned simulation (deg/pixel)
    npix : int, optional
        Number of pixels in X and Y for binned simulation
    proj : str, optional
        Projection for binned simulation
    coord : str, optional
        Coordinate system for binned simulation

    Returns
    -------
    obs : `~gammalib.GObservations`
        Observation container filled with simulated events
    """
    # Allocate ctobssim application and set parameters
    obssim = ctools.ctobssim(obs)
    obssim['seed']    = seed
    obssim['edisp']   = edisp
    obssim['chatter'] = chatter
    obssim['debug']   = debug

    # Optionally open the log file
    if log:
        obssim.logFileOpen()

    # Run ctobssim application. This will loop over all observations in the
    # container and simulation the events for each observation. Note that
    # events are not added together, they still apply to each observation
    # separately.
    obssim.run()

    # Binned option?
    if nbins > 0:

        # If energy boundaries are not given then determine the minimum and
        # the maximum energies from all observations and use these values
        # as energy boundaries. The energy boundaries are given in TeV.
        if emin == None or emax == None:
            emin = 1.0e30
            emax = 0.0
            for run in obssim.obs():
                emin = min(run.events().ebounds().emin().TeV(), emin)
                emax = max(run.events().ebounds().emax().TeV(), emax)

        # If a On source is specified then create On/Off observations
        if onsrc != None:

            # Extract source position from model
            model = obssim.obs().models()[onsrc]
            ra    = model['RA'].value()
            dec   = model['DEC'].value()

            # Allocate csphagen application and set parameters
            phagen = cscripts.csphagen(obssim.obs())
            phagen['ebinalg']     = 'LOG'
            phagen['emin']        = emin
            phagen['emax']        = emax
            phagen['enumbins']    = nbins
            phagen['coordsys']    = 'CEL'
            phagen['ra']          = ra
            phagen['dec']         = dec
            phagen['rad']         = onrad
            phagen['stack']       = False
            phagen['inexclusion'] = 'NONE'
            phagen['bkgmethod']   = 'REFLECTED'

            # Optionally open the log file
            if log:
                phagen.logFileOpen()

            # Run csphagen application
            phagen.run()

            # Make a deep copy of the observation that will be returned
            # (the csphagen object will go out of scope one the function is
            # left)
            obs = phagen.obs().copy()

        # ... otherwise use binned observations
        else:

            # Allocate ctbin application and set parameters
            binning = ctools.ctbin(obssim.obs())
            binning['ebinalg']  = 'LOG'
            binning['emin']     = emin
            binning['emax']     = emax
            binning['enumbins'] = nbins
            binning['usepnt']   = True # Use pointing for map centre
            binning['nxpix']    = npix
            binning['nypix']    = npix
            binning['binsz']    = binsz
            binning['coordsys'] = coord
            binning['proj']     = proj
            binning['chatter']  = chatter
            binning['debug']    = debug

            # Optionally open the log file
            if log:
                binning.logFileOpen()

            # Run ctbin application. This will loop over all observations in
            # the container and bin the events in counts maps
            binning.run()

            # If we have multiple input observations then create stacked response
            # cubes and append them to the observation
            if len(obssim.obs()) > 1:

                # Get stacked response (use pointing for map centre)
                response = get_stacked_response(obssim.obs(), None, None,
                                                binsz=binsz, nxpix=npix, nypix=npix,
                                                emin=emin, emax=emax, enumbins=nbins,
                                                edisp=edisp,
                                                coordsys=coord, proj=proj,
                                                addbounds=addbounds,
                                                log=log, debug=debug,
                                                chatter=chatter)

                # Set stacked response
                if edisp:
                    binning.obs()[0].response(response['expcube'],
                                             response['psfcube'],
                                             response['edispcube'],
                                             response['bkgcube'])
                else:
                    binning.obs()[0].response(response['expcube'],
                                              response['psfcube'],
                                              response['bkgcube'])

                # Set new models
                binning.obs().models(response['models'])

            # Make a deep copy of the observation that will be returned
            # (the ctbin object will go out of scope one the function is
            # left)
            obs = binning.obs().copy()

    else:

        # Make a deep copy of the observation that will be returned
        # (the ctobssim object will go out of scope one the function is
        # left)
        obs = obssim.obs().copy()

    # Delete the simulation
    del obssim

    # Return observation container
    return obs
Exemple #20
0
    def run_pipeline(self, debug=False, seed=0):
        """
		Test unbinned pipeline with FITS file saving
		"""
        # Set script parameters
        events_name = 'events.fits'
        cubefile_name = ''
        selected_events_name = 'selected_events.fits'
        result_name = 'results.xml'

        if self.simfilename and self.eventfilename:
            print('error')
            exit(10)

        ############ Simulate events

        if self.simfilename:

            # Setup simulation model
            if self.simfilename:
                self.obs.models(gammalib.GModels(self.simfilename))

            if self.runconf.WorkInMemory == 0:
                print('# Generate simulated event list on disk')
                # Simulate events on disk
                sim = ctools.ctobssim(self.obs)
                sim['outevents'] = events_name
                sim['debug'] = debug
                sim['seed'] = seed
                sim.execute()
                self.eventfilename = events_name

            if self.runconf.WorkInMemory == 1:
                print('# Generate simulated event list in memory')
                # Simulate events on memory
                sim = ctools.ctobssim(self.obs)
                sim['debug'] = debug
                sim['seed'] = seed
                sim.run()

        #if self.runfilename is not present
        #   import into DB if any
        #	exit(0)

        ############ Get events from DB

        if not self.simfilename and not self.eventfilename:
            #load from DB
            print('# Load event list from DB')

            #write selected_events_name
            if self.runconf.timeref_timesys == 'tt':
                tstart_tt = self.runconf.tmin
                tstop_tt = self.runconf.tmax
            if self.runconf.timeref_timesys == 'mjd':
                tstart_tt = Utility.convert_mjd_to_tt(self.runconf.tmin)
                tstop_tt = Utility.convert_mjd_to_tt(self.runconf.tmax)

            #tstart_tt = self.runconf.tmin
            #tstop_tt = self.runconf.tmax
            observationid = self.obsconf.id
            print("tstart" + str(tstart_tt))
            print("tstop" + str(tstart_tt))
            print(self.runconf.timeref_timesys)

            conf_dictionary = get_path_conf()

            path_base_fits = conf_dictionary['path_base_fits']
            tref_mjd = self.runconf.timeref

            if self.runconf.roi_frame == 'fk5':
                obs_ra = self.obsconf.roi_ra
                obs_dec = self.obsconf.roi_dec
            else:
                exit(10)

            emin = self.runconf.emin
            emax = self.runconf.emax
            fov = self.obsconf.roi_fov
            instrumentname = self.obsconf.instrument

            datarepository_dictionary = get_data_repository(instrumentname)
            datarepositoryid = datarepository_dictionary['datarepositoryid']

            print("before write fits")
            print(datetime.utcnow().strftime('%Y-%m-%d %H:%M:%S.%f')[:-3])
            events_name = write_fits(tstart_tt, tstop_tt, observationid,
                                     datarepositoryid, path_base_fits,
                                     tref_mjd, obs_ra, obs_dec, emin, emax,
                                     180, instrumentname)
            print("after write fits")
            print(datetime.utcnow().strftime('%Y-%m-%d %H:%M:%S.%f')[:-3])

            print("fitsname" + events_name)
            if self.runconf.WorkInMemory == 2:
                print('# Load event list from disk')
                #Load events from fits file on memory
                sim = ctools.ctobssim(self.obs)
                events = sim.obs()[0].events()
                for event in events:
                    print(event)

                #events.load(events_name)
                events.load(selected_events_name)

        ############ Select events

        if self.runconf.WorkInMemory == 1:
            print('# Select event list in memory')
            select = ctools.ctselect(sim.obs())

        #using file
        if self.runconf.WorkInMemory == 0:
            print('# Select event list from disk')
            select = ctools.ctselect()
            select['inobs'] = events_name
            select['outobs'] = selected_events_name

        select['ra'] = self.runconf.roi_ra
        select['dec'] = self.runconf.roi_dec
        select['rad'] = self.runconf.roi_ringrad
        select['tmin'] = 'MJD ' + str(self.runconf.tmin)
        #select['tmin']   = 'INDEF'
        #select['tmin'] = 0.0
        #select['tmin'] = 'MJD 55197.0007660185'
        #select['tmax']   = self.runconf.tmax
        #select['tmax']   = 'INDEF'
        select['tmax'] = 'MJD ' + str(self.runconf.tmax)
        #select['tmax']   = 55197.0007660185 + self.runconf.tmax / 86400.
        select['emin'] = self.runconf.emin
        select['emax'] = self.runconf.emax

        if self.runconf.WorkInMemory == 1:
            select.run()

        if self.runconf.WorkInMemory == 0:
            select.execute()

        print("after select events")
        print(datetime.utcnow().strftime('%Y-%m-%d %H:%M:%S.%f')[:-3])

        #print(self.runconf.roi_ra)
        #print(self.runconf.roi_dec)
        #print(self.obsconf.obs_fov)
        #print(self.runconf.tmin)
        #print(self.runconf.tmax)
        #print(self.runconf.emin)
        #print(self.runconf.emax)
        #print(select.obs()[0])
        print("select --")
        print(select)
        print("select --")

        if self.runconf.WorkInMemory == 2:
            print('# Load event list from disk')
            #Load events from fits file on memory
            sim = ctools.ctobssim(self.obs)
            events = sim.obs()[0].events()
            for event in events:
                print(event)

            #events.load(events_name)
            events.load(selected_events_name)

        print('Event list generated ----------------------')
        if self.runconf.WorkInMemory == 0:
            print(self.obs)
            print("obs --")
            print(self.obs[0])
            print("obs 0 --")
            localobs = self.obs

        if self.runconf.WorkInMemory == 1:
            print(select.obs())
            print(select.obs()[0])
            localobs = select.obs()

        for run in localobs:

            print('run ---' + selected_events_name)
            print("before ctbin")
            print(datetime.utcnow().strftime('%Y-%m-%d %H:%M:%S.%f')[:-3])

            print(run)

            # Create container with a single observation
            container = gammalib.GObservations()
            container.append(run)

            if self.runconf.MakeCtsMap == 1:
                cubefile_name = 'cube.fits'
                #event file in memory or read from fits file on memory
                if self.runconf.WorkInMemory == 1:
                    bin = ctools.ctbin(container)

                if self.runconf.WorkInMemory == 0:
                    #event file on disk
                    bin = ctools.ctbin()
                    bin['inobs'] = selected_events_name

                #make binned map on disk
                bin['outcube'] = cubefile_name

                #common configs
                bin['ebinalg'] = self.runconf.cts_ebinalg
                bin['emin'] = self.runconf.emin
                bin['emax'] = self.runconf.emax
                bin['enumbins'] = self.runconf.cts_enumbins
                bin['nxpix'] = ceil(self.runconf.roi_ringrad * 2 /
                                    self.runconf.cts_binsz)
                bin['nypix'] = ceil(self.runconf.roi_ringrad * 2 /
                                    self.runconf.cts_binsz)
                bin['binsz'] = self.runconf.cts_binsz
                bin['coordsys'] = self.runconf.cts_coordsys
                bin['usepnt'] = self.runconf.cts_usepnt  # Use pointing for map centre
                bin['proj'] = self.runconf.cts_proj
                bin['xref'] = self.runconf.roi_ra
                bin['yref'] = self.runconf.roi_dec
                print("-- bin")
                print(bin)
                #make binned map on disk
                if self.runconf.WorkInMemory == 0:
                    bin.execute()
                    # Set observation ID if make binned map on disk
                    bin.obs()[0].id(cubefile_name)
                    bin.obs()[0].eventfile(cubefile_name)
                    os.system('mkdir -p ' + self.runconf.resdir)
                    shutil.copy(
                        './cube.fits', self.runconf.resdir + '/' +
                        self.runconf.runprefix + '_cube.fits')

                    if self.runconf.CtsMapToPng == 1:
                        title = 'OBS ' + str(
                            self.obsconf.id) + ' / MJD ' + str(
                                self.runconf.tmin) + ' - ' + 'MJD ' + str(
                                    self.runconf.tmax)
                        SkyImage.display(cubefile_name, "sky1.png", 2, title)
                        #SkyImage.dispalywithds9_cts1(cubefile_name, "sky2", 10)
                        #copy results
                        os.system('mkdir -p ' + self.runconf.resdir)
                        shutil.copy(
                            './sky1.png', self.runconf.resdir + '/' +
                            self.runconf.runprefix + '_sky1.png')

                #make binned map on memory
                if self.runconf.WorkInMemory == 1:
                    bin.run()

                # Append result to observations
                #localobs.extend(bin.obs())
            print("after ctbin")
            print(datetime.utcnow().strftime('%Y-%m-%d %H:%M:%S.%f')[:-3])
            #print(obs)
            #print(obs[0])
            print(str(self.obsconf.caldb))

            #hypothesis builders
            #3GHextractor
            # 3GH Extractor code
            if self.runconf.HypothesisGenerator3GH and cubefile_name:
                self.analysisfilename = CTA3GHextractor_wrapper.extract_source(
                    cubefile_name)
                print(self.analysisfilename)
                #cv2.waitKey(0)
                print('HypothesisGeneratorEG3')

            #eseguire MLE
            print('analysisfilename: ' + self.analysisfilename)
            if self.analysisfilename:
                print('before MLE')
                print(datetime.utcnow().strftime('%Y-%m-%d %H:%M:%S.%f')[:-3])

                # Perform maximum likelihood fitting

                if self.runconf.WorkInMemory == 1:
                    like = ctools.ctlike(select.obs())

                if self.runconf.WorkInMemory == 0:
                    like = ctools.ctlike()

                    if (self.runconf.binned == "1"):
                        like['inobs'] = cubefile_name
                        like['expcube'] = "NONE"
                        like['psfcube'] = "NONE"
                        like['edispcube'] = "NONE"
                        like['bkgcube'] = "NONE"
                        like['statistic'] = "CHI2"

                    if (self.runconf.binned == "0"):
                        like['inobs'] = selected_events_name
                        like['statistic'] = "DEFAULT"

                like['inmodel'] = self.analysisfilename
                like['outmodel'] = result_name
                like['caldb'] = str(self.obsconf.caldb)
                like['irf'] = self.obsconf.irf

                like.execute()
                print(like)
                logL = like.opt().value()
                print(like.obs().models())

                print("after MLE")
                print(datetime.utcnow().strftime('%Y-%m-%d %H:%M:%S.%f')[:-3])

                # insert logL into results.xml
                tree = etree.parse(result_name)
                contentnav = tree.find(".//source[@type='PointSource']")
                #contentdiv = contentnav.getparent()
                #contentnav.set("ts",str(logL))
                contentnav.set("runid", str(self.runconf.runid))
                #print(etree.tostring(tree,encoding="unicode",pretty_print=True))
                f = open(result_name, 'w')
                f.write(
                    etree.tostring(tree, encoding="unicode",
                                   pretty_print=True))
                f.close()

                os.system('mkdir -p ' + self.runconf.resdir)
                shutil.copy(
                    './results.xml', self.runconf.resdir + '/' +
                    self.runconf.runprefix + '_results.xml')

                if self.runconf.deleterun == "1":
                    cmd = 'rm -r ' + self.runconf.rundir
                    os.system(cmd)

            if self.runconf.HypothesisGenerator3GH:
                CTA3GHextractor_wrapper.print_graphs(self.simfilename,
                                                     result_name,
                                                     self.analysisfilename)
                #cv2.destroyAllWindows()
                print('HypothesisGeneratorEG3')

        # Return
        return
def stacked_pipeline(model_name, duration):
    """
    Stacked analysis pipeline.
    """
    # Set script parameters
    caldb = "prod2"
    irf = "South_50h"
    ra = 83.63
    dec = 22.01
    rad_sim = 10.0
    tstart = 0.0
    tstop = duration
    emin = 0.1
    emax = 100.0
    enumbins = 40
    nxpix = 200
    nypix = 200
    binsz = 0.02
    coordsys = "CEL"
    proj = "CAR"

    # Get start CPU time
    cpu_start = time.clock()

    # Simulate events
    sim = ctools.ctobssim()
    sim["inmodel"] = model_name
    sim["caldb"] = caldb
    sim["irf"] = irf
    sim["ra"] = ra
    sim["dec"] = dec
    sim["rad"] = rad_sim
    sim["tmin"] = tstart
    sim["tmax"] = tstop
    sim["emin"] = emin
    sim["emax"] = emax
    sim.run()

    # Bin events into counts map
    bin = ctools.ctbin(sim.obs())
    bin["ebinalg"] = "LOG"
    bin["emin"] = emin
    bin["emax"] = emax
    bin["enumbins"] = enumbins
    bin["nxpix"] = nxpix
    bin["nypix"] = nypix
    bin["binsz"] = binsz
    bin["coordsys"] = coordsys
    bin["proj"] = proj
    bin["xref"] = ra
    bin["yref"] = dec
    bin.run()

    # Create exposure cube
    expcube = ctools.ctexpcube(sim.obs())
    expcube["incube"] = "NONE"
    expcube["caldb"] = caldb
    expcube["irf"] = irf
    expcube["ebinalg"] = "LOG"
    expcube["emin"] = emin
    expcube["emax"] = emax
    expcube["enumbins"] = enumbins
    expcube["nxpix"] = nxpix
    expcube["nypix"] = nypix
    expcube["binsz"] = binsz
    expcube["coordsys"] = coordsys
    expcube["proj"] = proj
    expcube["xref"] = ra
    expcube["yref"] = dec
    expcube.run()

    # Create PSF cube
    psfcube = ctools.ctpsfcube(sim.obs())
    psfcube["incube"] = "NONE"
    psfcube["caldb"] = caldb
    psfcube["irf"] = irf
    psfcube["ebinalg"] = "LOG"
    psfcube["emin"] = emin
    psfcube["emax"] = emax
    psfcube["enumbins"] = enumbins
    psfcube["nxpix"] = 10
    psfcube["nypix"] = 10
    psfcube["binsz"] = 1.0
    psfcube["coordsys"] = coordsys
    psfcube["proj"] = proj
    psfcube["xref"] = ra
    psfcube["yref"] = dec
    psfcube.run()

    # Create background cube
    bkgcube = ctools.ctbkgcube(sim.obs())
    bkgcube["incube"] = "NONE"
    bkgcube["ebinalg"] = "LOG"
    bkgcube["emin"] = emin
    bkgcube["emax"] = emax
    bkgcube["enumbins"] = enumbins
    bkgcube["nxpix"] = 10
    bkgcube["nypix"] = 10
    bkgcube["binsz"] = 1.0
    bkgcube["coordsys"] = coordsys
    bkgcube["proj"] = proj
    bkgcube["xref"] = ra
    bkgcube["yref"] = dec
    bkgcube.run()

    # Attach background model to observation container
    bin.obs().models(bkgcube.models())

    # Set Exposure and Psf cube for first CTA observation
    # (ctbin will create an observation with a single container)
    bin.obs()[0].response(expcube.expcube(), psfcube.psfcube(),
                          bkgcube.bkgcube())

    # Get ctlike start CPU time
    cpu_ctlike = time.clock()

    # Perform maximum likelihood fitting
    like = ctools.ctlike(bin.obs())
    like.run()

    # Get stop CPU time and compute elapsed times
    cpu_stop = time.clock()
    cpu_elapsed = cpu_stop - cpu_start
    cpu_ctlike = cpu_stop - cpu_ctlike

    # Return
    return cpu_elapsed, cpu_ctlike
Exemple #22
0
def sim(obs,
        log=False,
        debug=False,
        chatter=2,
        edisp=False,
        seed=0,
        emin=None,
        emax=None,
        nbins=0,
        onsrc=None,
        onrad=0.2,
        addbounds=False,
        binsz=0.05,
        npix=200,
        proj='TAN',
        coord='GAL'):
    """
    Simulate events for all observations in the container

    Simulate events for all observations using ctobssim. If the number of
    energy bins is positive, the events are binned into a counts cube using
    ctbin. If multiple observations are simulated, the counts cube is a
    stacked cube and the corresponding response cubes are computed using
    ctexpcube, ctpsfcube, ctbkgcube and optionally ctedispcube. The response
    cubes are attached to the first observation in the container, which
    normally is the observation with the counts cube.

    Parameters
    ----------
    obs : `~gammalib.GObservations`
        Observation container without events
    log : bool, optional
        Create log file(s)
    debug : bool, optional
        Create console dump?
    chatter : int, optional
        Chatter level
    edisp : bool, optional
        Apply energy dispersion?
    seed : int, optional
        Seed value for simulations
    emin : float, optional
        Minimum energy of counts cube for binned (TeV)
    emax : float, optional
        Maximum energy of counts cube for binned (TeV)
    nbins : int, optional
        Number of energy bins (0=unbinned)
    onsrc : str, optional
        Name of source for On region (None if no On/Off obs. is used)
    onrad : float, optional
        Radius for On region (deg)
    addbounds : bool, optional
        Add boundaries at observation energies
    binsz : float, optional
        Pixel size for binned simulation (deg/pixel)
    npix : int, optional
        Number of pixels in X and Y for binned simulation
    proj : str, optional
        Projection for binned simulation
    coord : str, optional
        Coordinate system for binned simulation

    Returns
    -------
    obs : `~gammalib.GObservations`
        Observation container filled with simulated events
    """
    # Allocate ctobssim application and set parameters
    obssim = ctools.ctobssim(obs)
    obssim['seed'] = seed
    obssim['edisp'] = edisp
    obssim['chatter'] = chatter
    obssim['debug'] = debug

    # Optionally open the log file
    if log:
        obssim.logFileOpen()

    # Run ctobssim application. This will loop over all observations in the
    # container and simulation the events for each observation. Note that
    # events are not added together, they still apply to each observation
    # separately.
    obssim.run()

    # Binned option?
    if nbins > 0:

        # If energy boundaries are not given then determine the minimum and
        # the maximum energies from all observations and use these values
        # as energy boundaries. The energy boundaries are given in TeV.
        if emin == None or emax == None:
            emin = 1.0e30
            emax = 0.0
            for run in obssim.obs():
                emin = min(run.events().ebounds().emin().TeV(), emin)
                emax = max(run.events().ebounds().emax().TeV(), emax)

        # If a On source is specified then create On/Off observations
        if onsrc != None:

            # Extract source position from model
            model = obssim.obs().models()[onsrc]
            ra = model['RA'].value()
            dec = model['DEC'].value()

            # Allocate csphagen application and set parameters
            phagen = cscripts.csphagen(obssim.obs())
            phagen['ebinalg'] = 'LOG'
            phagen['emin'] = emin
            phagen['emax'] = emax
            phagen['enumbins'] = nbins
            phagen['coordsys'] = 'CEL'
            phagen['ra'] = ra
            phagen['dec'] = dec
            phagen['rad'] = onrad
            phagen['stack'] = False
            phagen['inexclusion'] = 'NONE'

            # Optionally open the log file
            if log:
                phagen.logFileOpen()

            # Run csphagen application
            phagen.run()

            # Make a deep copy of the observation that will be returned
            # (the csphagen object will go out of scope one the function is
            # left)
            obs = phagen.obs().copy()

        # ... otherwise use binned observations
        else:

            # Allocate ctbin application and set parameters
            binning = ctools.ctbin(obssim.obs())
            binning['ebinalg'] = 'LOG'
            binning['emin'] = emin
            binning['emax'] = emax
            binning['enumbins'] = nbins
            binning['usepnt'] = True  # Use pointing for map centre
            binning['nxpix'] = npix
            binning['nypix'] = npix
            binning['binsz'] = binsz
            binning['coordsys'] = coord
            binning['proj'] = proj
            binning['chatter'] = chatter
            binning['debug'] = debug

            # Optionally open the log file
            if log:
                binning.logFileOpen()

            # Run ctbin application. This will loop over all observations in
            # the container and bin the events in counts maps
            binning.run()

            # If we have multiple input observations then create stacked response
            # cubes and append them to the observation
            if len(obssim.obs()) > 1:

                # Get stacked response (use pointing for map centre)
                response = get_stacked_response(obssim.obs(),
                                                None,
                                                None,
                                                binsz=binsz,
                                                nxpix=npix,
                                                nypix=npix,
                                                emin=emin,
                                                emax=emax,
                                                enumbins=nbins,
                                                edisp=edisp,
                                                coordsys=coord,
                                                proj=proj,
                                                addbounds=addbounds,
                                                log=log,
                                                debug=debug,
                                                chatter=chatter)

                # Set stacked response
                if edisp:
                    binning.obs()[0].response(response['expcube'],
                                              response['psfcube'],
                                              response['edispcube'],
                                              response['bkgcube'])
                else:
                    binning.obs()[0].response(response['expcube'],
                                              response['psfcube'],
                                              response['bkgcube'])

                # Set new models
                binning.obs().models(response['models'])

            # Make a deep copy of the observation that will be returned
            # (the ctbin object will go out of scope one the function is
            # left)
            obs = binning.obs().copy()

    else:

        # Make a deep copy of the observation that will be returned
        # (the ctobssim object will go out of scope one the function is
        # left)
        obs = obssim.obs().copy()

    # Delete the simulation
    del obssim

    # Return observation container
    return obs
Exemple #23
0
def sim(obs,
        log=False,
        debug=False,
        chatter=2,
        edisp=False,
        seed=0,
        nbins=31,
        binsz=0.02,
        npix=50,
        proj="CAR",
        coord="CEL",
        outfile=""):
    """
    Simulate events for all observations in the container.

    Parameters:
     obs   - Observation container
    Keywords:
     log   - Create log file(s)
     debug - Create console dump?
     edisp - Apply energy dispersion?
     seed  - Seed value for simulations (default: 0)
     nbins - Number of energy bins (default: 0=unbinned)
     binsz - Pixel size for binned simulation (deg/pixel)
     npix  - Number of pixels in X and Y for binned simulation
    """

    # Allocate ctobssim application and set parameters
    sim = ctools.ctobssim(obs)
    sim["seed"] = seed
    sim["edisp"] = edisp
    sim["outevents"] = outfile
    sim['nthreads'] = 2

    # Optionally open the log file
    if log:
        sim.logFileOpen()

    # Optionally switch-on debugging model
    if debug:
        sim["debug"] = True

    # Set chatter level
    sim["chatter"] = chatter

    # Run ctobssim application. This will loop over all observations in the
    # container and simulation the events for each observation. Note that
    # events are not added together, they still apply to each observation
    # separately.
    sim.run()

    # Binned option?
    if nbins > 0:

        # Determine common energy boundaries for observations
        emin = None
        emax = None
        for run in sim.obs():
            run_emin = run.events().ebounds().emin().TeV()
            run_emax = run.events().ebounds().emax().TeV()
            if emin == None:
                emin = run_emin
            elif run_emin > emin:
                emin = run_emin
            if emax == None:
                emax = run_emax
            elif run_emax > emax:
                emax = run_emax

        # Allocate ctbin application and set parameters
        bin = ctools.ctbin(sim.obs())
        bin["ebinalg"] = "LOG"
        bin["emin"] = emin
        bin["emax"] = emax
        bin["enumbins"] = nbins
        bin["usepnt"] = True  # Use pointing for map centre
        bin["nxpix"] = npix
        bin["nypix"] = npix
        bin["binsz"] = binsz
        bin["coordsys"] = coord
        bin["proj"] = proj
        bin['nthreads'] = 2

        # Optionally open the log file
        if log:
            bin.logFileOpen()

        # Optionally switch-on debugging model
        if debug:
            bin["debug"] = True

        # Set chatter level
        bin["chatter"] = chatter

        # Run ctbin application. This will loop over all observations in
        # the container and bin the events in counts maps
        bin.run()

        # Make a deep copy of the observation that will be returned
        # (the ctbin object will go out of scope one the function is
        # left)
        obs = bin.obs().copy()

    else:

        # Make a deep copy of the observation that will be returned
        # (the ctobssim object will go out of scope one the function is
        # left)
        obs = sim.obs().copy()

    # Optionally save file
    if (len(outfile) > 0):
        sim.save()

    # Delete the simulation
    del sim

    # Return observation container
    return obs
Exemple #24
0
def get_stacked_obs(cls, obs):
    """
    Bin an observation and return an observation container with a single
    binned observation

    Parameters
    ----------
    cls : `~ctools.cscript`
        cscript class
    obs : `~gammalib.GObservations`
        Observation container

    Returns
    -------
    obs : `~gammalib.GObservations`
        Observation container where the first observation is a binned observation
    """
    # Write header
    if cls._logExplicit():
        cls._log.header3('Binning events')

    # Bin events
    cntcube = ctools.ctbin(obs)
    cntcube['usepnt'] = False
    cntcube['ebinalg'] = 'LOG'
    cntcube['xref'] = cls['xref'].real()
    cntcube['yref'] = cls['yref'].real()
    cntcube['binsz'] = cls['binsz'].real()
    cntcube['nxpix'] = cls['nxpix'].integer()
    cntcube['nypix'] = cls['nypix'].integer()
    cntcube['enumbins'] = cls['enumbins'].integer()
    cntcube['emin'] = cls['emin'].real()
    cntcube['emax'] = cls['emax'].real()
    cntcube['coordsys'] = cls['coordsys'].string()
    cntcube['proj'] = cls['proj'].string()
    cntcube.run()

    # Write header
    if cls._logExplicit():
        cls._log.header3('Creating stacked response')

    # Get stacked response
    response = get_stacked_response(obs,
                                    cls['xref'].real(),
                                    cls['yref'].real(),
                                    binsz=cls['binsz'].real(),
                                    nxpix=cls['nxpix'].integer(),
                                    nypix=cls['nypix'].integer(),
                                    emin=cls['emin'].real(),
                                    emax=cls['emax'].real(),
                                    enumbins=cls['enumbins'].integer(),
                                    edisp=cls['edisp'].boolean(),
                                    coordsys=cls['coordsys'].string(),
                                    proj=cls['proj'].string())

    # Retrieve a new oberservation container
    new_obs = cntcube.obs().copy()

    # Set stacked response
    if cls['edisp'].boolean():
        new_obs[0].response(response['expcube'], response['psfcube'],
                            response['edispcube'], response['bkgcube'])
    else:
        new_obs[0].response(response['expcube'], response['psfcube'],
                            response['bkgcube'])

    # Get new models
    models = response['models']

    # Set models for new oberservation container
    new_obs.models(models)

    # Return new oberservation container
    return new_obs
def run_pipeline(obs, ra=83.63, dec=22.01, emin=0.1, emax=100.0, \
                 enumbins=20, nxpix=200, nypix=200, binsz=0.02, \
                 coordsys="CEL", proj="CAR", debug=False):
    """
    Simulation and stacked analysis pipeline.

    Keywords:
     ra       - RA of cube centre [deg] (default: 83.6331)
     dec      - DEC of cube centre [deg] (default: 22.0145)
     emin     - Minimum energy of cube [TeV] (default: 0.1)
     emax     - Maximum energy of cube [TeV] (default: 100.0)
     enumbins - Number of energy bins in cube (default: 20)
     nxpix    - Number of RA pixels in cube (default: 200)
     nypix    - Number of DEC pixels in cube (default: 200)
     binsz    - Spatial cube bin size [deg] (default: 0.02)
     coordsys - Cube coordinate system (CEL or GAL)
     proj     - Cube World Coordinate System (WCS) projection
     debug    - Enable debugging (default: False)
    """
    # Simulate events
    sim = ctools.ctobssim(obs)
    sim["debug"].boolean(debug)
    sim.run()

    # Bin events into counts map
    bin = ctools.ctbin(sim.obs())
    bin["ebinalg"].string("LOG")
    bin["emin"].real(emin)
    bin["emax"].real(emax)
    bin["enumbins"].integer(enumbins)
    bin["nxpix"].integer(nxpix)
    bin["nypix"].integer(nypix)
    bin["binsz"].real(binsz)
    bin["coordsys"].string(coordsys)
    bin["proj"].string(proj)
    bin["xref"].real(ra)
    bin["yref"].real(dec)
    bin["debug"].boolean(debug)
    bin.run()

    # Create exposure cube
    expcube = ctools.ctexpcube(sim.obs())
    expcube["incube"].filename("NONE")
    expcube["ebinalg"].string("LOG")
    expcube["emin"].real(emin)
    expcube["emax"].real(emax)
    expcube["enumbins"].integer(enumbins)
    expcube["nxpix"].integer(nxpix)
    expcube["nypix"].integer(nypix)
    expcube["binsz"].real(binsz)
    expcube["coordsys"].string(coordsys)
    expcube["proj"].string(proj)
    expcube["xref"].real(ra)
    expcube["yref"].real(dec)
    expcube["debug"].boolean(debug)
    expcube.run()

    # Create PSF cube
    psfcube = ctools.ctpsfcube(sim.obs())
    psfcube["incube"].filename("NONE")
    psfcube["ebinalg"].string("LOG")
    psfcube["emin"].real(emin)
    psfcube["emax"].real(emax)
    psfcube["enumbins"].integer(enumbins)
    psfcube["nxpix"].integer(10)
    psfcube["nypix"].integer(10)
    psfcube["binsz"].real(1.0)
    psfcube["coordsys"].string(coordsys)
    psfcube["proj"].string(proj)
    psfcube["xref"].real(ra)
    psfcube["yref"].real(dec)
    psfcube["debug"].boolean(debug)
    psfcube.run()

    # Create background cube
    bkgcube = ctools.ctbkgcube(sim.obs())
    bkgcube["incube"].filename("NONE")
    bkgcube["ebinalg"].string("LOG")
    bkgcube["emin"].real(emin)
    bkgcube["emax"].real(emax)
    bkgcube["enumbins"].integer(enumbins)
    bkgcube["nxpix"].integer(10)
    bkgcube["nypix"].integer(10)
    bkgcube["binsz"].real(1.0)
    bkgcube["coordsys"].string(coordsys)
    bkgcube["proj"].string(proj)
    bkgcube["xref"].real(ra)
    bkgcube["yref"].real(dec)
    bkgcube["debug"].boolean(debug)
    bkgcube.run()

    # Attach background model to observation container
    bin.obs().models(bkgcube.models())

    # Set Exposure and Psf cube for first CTA observation
    # (ctbin will create an observation with a single container)
    bin.obs()[0].response(expcube.expcube(), psfcube.psfcube(), bkgcube.bkgcube())

    # Perform maximum likelihood fitting
    like = ctools.ctlike(bin.obs())
    like["debug"].boolean(True) # Switch this always on for results in console
    like.run()
	
    # Return
    return
def run_pipeline(obs, ra=83.63, dec=22.01, emin=0.1, emax=100.0, \
                 enumbins=20, nxpix=200, nypix=200, binsz=0.02, \
                 coordsys="CEL", proj="CAR", \
                 model="${CTOOLS}/share/models/crab.xml", \
                 caldb="prod2", irf="South_50h", \
                 debug=False):
    """
    Simulation and stacked analysis pipeline.

    Keywords:
     ra       - RA of cube centre [deg] (default: 83.6331)
     dec      - DEC of cube centre [deg] (default: 22.0145)
     emin     - Minimum energy of cube [TeV] (default: 0.1)
     emax     - Maximum energy of cube [TeV] (default: 100.0)
     enumbins - Number of energy bins in cube (default: 20)
     nxpix    - Number of RA pixels in cube (default: 200)
     nypix    - Number of DEC pixels in cube (default: 200)
     binsz    - Spatial cube bin size [deg] (default: 0.02)
     coordsys - Cube coordinate system (CEL or GAL)
     proj     - Cube World Coordinate System (WCS) projection
     debug    - Enable debugging (default: False)
    """
    # Simulate events
    sim = ctools.ctobssim(obs)
    sim["debug"].boolean(debug)
    sim["outevents"].filename("obs.xml")
    sim.execute()

    # Bin events into counts map
    bin = ctools.ctbin()
    bin["inobs"].filename("obs.xml")
    bin["outcube"].filename("cntcube.fits")
    bin["ebinalg"].string("LOG")
    bin["emin"].real(emin)
    bin["emax"].real(emax)
    bin["enumbins"].integer(enumbins)
    bin["nxpix"].integer(nxpix)
    bin["nypix"].integer(nypix)
    bin["binsz"].real(binsz)
    bin["coordsys"].string(coordsys)
    bin["proj"].string(proj)
    bin["xref"].real(ra)
    bin["yref"].real(dec)
    bin["debug"].boolean(debug)
    bin.execute()

    # Create exposure cube
    expcube = ctools.ctexpcube()
    expcube["inobs"].filename("obs.xml")
    expcube["incube"].filename("cntcube.fits")
    expcube["outcube"].filename("expcube.fits")
    expcube["caldb"].string(caldb)
    expcube["irf"].string(irf)
    expcube["ebinalg"].string("LOG")
    expcube["emin"].real(emin)
    expcube["emax"].real(emax)
    expcube["enumbins"].integer(enumbins)
    expcube["nxpix"].integer(nxpix)
    expcube["nypix"].integer(nypix)
    expcube["binsz"].real(binsz)
    expcube["coordsys"].string(coordsys)
    expcube["proj"].string(proj)
    expcube["xref"].real(ra)
    expcube["yref"].real(dec)
    expcube["debug"].boolean(debug)
    expcube.execute()

    # Create PSF cube
    psfcube = ctools.ctpsfcube()
    psfcube["inobs"].filename("obs.xml")
    psfcube["incube"].filename("NONE")
    psfcube["outcube"].filename("psfcube.fits")
    psfcube["caldb"].string(caldb)
    psfcube["irf"].string(irf)
    psfcube["ebinalg"].string("LOG")
    psfcube["emin"].real(emin)
    psfcube["emax"].real(emax)
    psfcube["enumbins"].integer(enumbins)
    psfcube["nxpix"].integer(10)
    psfcube["nypix"].integer(10)
    psfcube["binsz"].real(1.0)
    psfcube["coordsys"].string(coordsys)
    psfcube["proj"].string(proj)
    psfcube["xref"].real(ra)
    psfcube["yref"].real(dec)
    psfcube["debug"].boolean(debug)
    psfcube.execute()

    # Create background cube
    bkgcube = ctools.ctbkgcube()
    bkgcube["inobs"].filename("obs.xml")
    bkgcube["inmodel"].filename(model)
    bkgcube["incube"].filename("cntcube.fits")
    bkgcube["outcube"].filename("bkgcube.fits")
    bkgcube["outmodel"].filename("model_bkg.xml")
    bkgcube["caldb"].string(caldb)
    bkgcube["irf"].string(irf)
    bkgcube["ebinalg"].string("LOG")
    bkgcube["emin"].real(emin)
    bkgcube["emax"].real(emax)
    bkgcube["enumbins"].integer(enumbins)
    bkgcube["nxpix"].integer(10)
    bkgcube["nypix"].integer(10)
    bkgcube["binsz"].real(1.0)
    bkgcube["coordsys"].string(coordsys)
    bkgcube["proj"].string(proj)
    bkgcube["xref"].real(ra)
    bkgcube["yref"].real(dec)
    bkgcube["debug"].boolean(debug)
    bkgcube.execute()

    # Perform maximum likelihood fitting
    like = ctools.ctlike()
    like["inobs"].filename("cntcube.fits")
    like["inmodel"].filename("model_bkg.xml")
    like["outmodel"].filename("fit_results.xml")
    like["expcube"].filename("expcube.fits")
    like["psfcube"].filename("psfcube.fits")
    like["bkgcube"].filename("bkgcube.fits")
    like["caldb"].string(caldb)
    like["irf"].string(irf)
    like["debug"].boolean(True) # Switch this always on for results in console
    like.execute()
	
    # Return
    return
Exemple #27
0
    def _bin_observation(self, obs):
        """
        Bin an observation is a binned analysis was requested.

        Args:
            obs: Observation container.

        Returns:
            Observation container with a binned.
        """
        # Header
        if self._logExplicit():
            self._log.header3("Binning events")

        # Bin events
        cntcube = ctools.ctbin(obs)
        cntcube["usepnt"] = False
        cntcube["ebinalg"] = "LOG"
        cntcube["xref"] = self["xref"].real()
        cntcube["yref"] = self["yref"].real()
        cntcube["binsz"] = self["binsz"].real()
        cntcube["nxpix"] = self["nxpix"].integer()
        cntcube["nypix"] = self["nypix"].integer()
        cntcube["enumbins"] = self["enumbins"].integer()
        cntcube["emin"] = self["emin"].real()
        cntcube["emax"] = self["emax"].real()
        cntcube["coordsys"] = self["coordsys"].string()
        cntcube["proj"] = self["proj"].string()
        cntcube.run()

        # Header
        if self._logExplicit():
            self._log.header3("Creating exposure cube")

        # Create exposure cube
        expcube = ctools.ctexpcube(obs)
        expcube["incube"] = "NONE"
        expcube["usepnt"] = False
        expcube["ebinalg"] = "LOG"
        expcube["xref"] = self["xref"].real()
        expcube["yref"] = self["yref"].real()
        expcube["binsz"] = self["binsz"].real()
        expcube["nxpix"] = self["nxpix"].integer()
        expcube["nypix"] = self["nypix"].integer()
        expcube["enumbins"] = self["enumbins"].integer()
        expcube["emin"] = self["emin"].real()
        expcube["emax"] = self["emax"].real()
        expcube["coordsys"] = self["coordsys"].string()
        expcube["proj"] = self["proj"].string()
        expcube.run()

        # Header
        if self._logExplicit():
            self._log.header3("Creating point spread function cube")

        # Compute spatial binning for point spread function and
        # energy dispersion cubes
        binsz = 10.0 * self["binsz"].real()
        nxpix = self["nxpix"].integer() // 10  # Make sure result is int
        nypix = self["nypix"].integer() // 10  # Make sure result is int
        if nxpix < 2:
            nxpix = 2
        if nypix < 2:
            nypix = 2

        # Create point spread function cube
        psfcube = ctools.ctpsfcube(obs)
        psfcube["incube"] = "NONE"
        psfcube["usepnt"] = False
        psfcube["ebinalg"] = "LOG"
        psfcube["xref"] = self["xref"].real()
        psfcube["yref"] = self["yref"].real()
        psfcube["binsz"] = binsz
        psfcube["nxpix"] = nxpix
        psfcube["nypix"] = nypix
        psfcube["enumbins"] = self["enumbins"].integer()
        psfcube["emin"] = self["emin"].real()
        psfcube["emax"] = self["emax"].real()
        psfcube["coordsys"] = self["coordsys"].string()
        psfcube["proj"] = self["proj"].string()
        psfcube.run()

        # Check if we need to include energy dispersion
        if self["edisp"].boolean():

            # Header
            if self._logExplicit():
                self._log.header3("Creating energy dispersion cube")

            # Create energy dispersion cube
            edispcube = ctools.ctedispcube(obs)
            edispcube["incube"] = "NONE"
            edispcube["usepnt"] = False
            edispcube["ebinalg"] = "LOG"
            edispcube["xref"] = self["xref"].real()
            edispcube["yref"] = self["yref"].real()
            edispcube["binsz"] = binsz
            edispcube["nxpix"] = nxpix
            edispcube["nypix"] = nypix
            edispcube["enumbins"] = self["enumbins"].integer()
            edispcube["emin"] = self["emin"].real()
            edispcube["emax"] = self["emax"].real()
            edispcube["coordsys"] = self["coordsys"].string()
            edispcube["proj"] = self["proj"].string()
            edispcube.run()

        # Header
        if self._logExplicit():
            self._log.header3("Creating background cube")

        # Create background cube
        bkgcube = ctools.ctbkgcube(obs)
        bkgcube["incube"] = "NONE"
        bkgcube["usepnt"] = False
        bkgcube["ebinalg"] = "LOG"
        bkgcube["xref"] = self["xref"].real()
        bkgcube["yref"] = self["yref"].real()
        bkgcube["binsz"] = self["binsz"].real()
        bkgcube["nxpix"] = self["nxpix"].integer()
        bkgcube["nypix"] = self["nypix"].integer()
        bkgcube["enumbins"] = self["enumbins"].integer()
        bkgcube["emin"] = self["emin"].real()
        bkgcube["emax"] = self["emax"].real()
        bkgcube["coordsys"] = self["coordsys"].string()
        bkgcube["proj"] = self["proj"].string()
        bkgcube.run()

        # Retrieve a new oberservation container
        new_obs = cntcube.obs().copy()

        # Get new models
        models = bkgcube.models()

        # Set stacked response
        if self["edisp"].boolean():
            new_obs[0].response(expcube.expcube(), psfcube.psfcube(),
                                edispcube.edispcube(), bkgcube.bkgcube())
        else:
            new_obs[0].response(expcube.expcube(), psfcube.psfcube(),
                                bkgcube.bkgcube())

        # Fix background models if required
        if self["fix_bkg"].boolean():
            for model in models:
                if model.classname() != "GModelSky":
                    for par in model:
                        par.fix()

        # Set models for new oberservation container
        new_obs.models(models)

        # Return new oberservation container
        return new_obs
Exemple #28
0
    def _test_python(self):
        """
        Test ctbin from Python
        """
        # Allocate ctbin
        binning = ctools.ctbin()

        # Check that empty ctbin has an empty observation container and counts
        # cube
        self.test_value(
            binning.obs().size(), 0,
            'Check that empty ctbin has an empty observation container')
        self.test_value(binning.cubes(), 0,
                        'Check that empty ctbin has an empty counts cube')

        # Check that saving does not nothing
        binning['logfile'] = 'ctbin_py0.log'
        binning['outobs'] = 'ctbin_py0.fits'
        binning.logFileOpen()
        binning.save()
        self.test_assert(not os.path.isfile('ctbin_py0.fits'),
                         'Check that no counts cube has been created')

        # Check that publishing does not lead to an exception or segfault
        binning.publish()

        # Check that clearing does not lead to an exception or segfault
        binning.clear()

        # Now set ctbin parameters
        binning['inobs'] = self._events
        binning['outobs'] = 'ctbin_py1.fits'
        binning['ebinalg'] = 'LOG'
        binning['emin'] = 1.0
        binning['emax'] = 100.0
        binning['enumbins'] = 10
        binning['nxpix'] = 40
        binning['nypix'] = 40
        binning['binsz'] = 0.1
        binning['coordsys'] = 'CEL'
        binning['proj'] = 'CAR'
        binning['xref'] = 83.63
        binning['yref'] = 22.01
        binning['logfile'] = 'ctbin_py1.log'
        binning['chatter'] = 2

        # Run ctbin tool
        binning.logFileOpen()
        binning.run()

        # Check content of observation container and counts cube
        self._check_observation(binning, 245)
        self._check_cube(binning.cube(), 245)

        # Copy ctbin tool
        cpy_bin = binning.copy()

        # Check content of observation container and counts cube
        self._check_observation(cpy_bin, 245)
        self._check_cube(cpy_bin.cube(), 245)

        # Run copy of ctbin tool again
        cpy_bin['logfile'] = 'ctbin_py2.log'
        cpy_bin['chatter'] = 3
        cpy_bin.logFileOpen()
        cpy_bin.run()

        # Check content of observation container and number of counts cubes.
        # There should be a single binned observation in the observation
        # container, which is the one that was produced in the run before.
        # Since ctbin finds no unbinned observation in the container, the
        # number of cubes should be zero.
        self._check_observation(cpy_bin, 245)
        self.test_value(cpy_bin.cubes(), 0,
                        'Check that there are no counts cubes')

        # Save counts cube
        binning.save()

        # Load counts cube and check content
        evt = gammalib.GCTAEventCube('ctbin_py1.fits')
        self._check_cube(evt, 245)

        # Now clear ctbin tool
        binning.clear()

        # Check that cleared ctbin has an empty observation container and
        # counts cube
        self.test_value(
            binning.obs().size(), 0,
            'Check that empty ctbin has an empty observation container')
        self.test_value(binning.cubes(), 0,
                        'Check that empty ctbin has an empty counts cube')

        # Prepare observation container for stacking of events into a
        # single counts cube
        obs = self._obs_events()

        # Set-up ctbin using an observation container
        binning = ctools.ctbin(obs)
        binning['outobs'] = 'ctbin_py3.fits'
        binning['ebinalg'] = 'LOG'
        binning['emin'] = 1.0
        binning['emax'] = 100.0
        binning['enumbins'] = 10
        binning['nxpix'] = 40
        binning['nypix'] = 40
        binning['binsz'] = 0.1
        binning['coordsys'] = 'CEL'
        binning['proj'] = 'CAR'
        binning['xref'] = 83.63
        binning['yref'] = 22.01
        binning['publish'] = True
        binning['logfile'] = 'ctbin_py3.log'
        binning['chatter'] = 3

        # Execute ctbin tool
        binning.logFileOpen()
        binning.execute()

        # Check content of observation and cube (need multiplier=3 since
        # three identical observations have been appended)
        self._check_observation(binning, 245, multiplier=3)
        self._check_cube(binning.cube(), 245, multiplier=3)

        # Load counts cube and check content.
        evt = gammalib.GCTAEventCube('ctbin_py3.fits')
        self._check_cube(evt, 245, multiplier=3)

        # Now go for a fully Pythonic version with all parameters being
        # specified in a dictionary
        pars = {
            'inobs': self._events,
            'ebinalg': 'LIN',
            'emin': 1.0,
            'emax': 100.0,
            'enumbins': 10,
            'nxpix': 40,
            'nypix': 40,
            'binsz': 0.1,
            'coordsys': 'CEL',
            'proj': 'CAR',
            'xref': 83.63,
            'yref': 22.01,
            'outobs': 'ctbin_py4.fits',
            'logfile': 'ctbin_py4.log',
            'chatter': 2
        }
        binning = ctools.ctbin()
        binning.pardict(pars)
        binning.logFileOpen()
        binning.execute()

        # Load counts cube and check content
        evt = gammalib.GCTAEventCube('ctbin_py4.fits')
        self._check_cube(evt, 245)

        # Test unstacked version
        binning = ctools.ctbin()
        binning['inobs'] = self._inobs_two
        binning['stack'] = False
        binning['prefix'] = 'cntcube_py5_'
        binning['ebinalg'] = 'LOG'
        binning['emin'] = 1.0
        binning['emax'] = 100.0
        binning['enumbins'] = 10
        binning['nxpix'] = 40
        binning['nypix'] = 40
        binning['binsz'] = 0.1
        binning['coordsys'] = 'CEL'
        binning['proj'] = 'CAR'
        binning['xref'] = 83.63
        binning['yref'] = 22.01
        binning['outobs'] = 'ctbin_py5.xml'
        binning['logfile'] = 'ctbin_py5.log'
        binning['chatter'] = 2
        binning.logFileOpen()
        binning.run()

        # Check individual cubes
        self._check_cube(binning.cube(0), 245)
        self._check_cube(binning.cube(1), 245)

        # Save counts cube
        binning.save()

        # Load observations
        obs = gammalib.GObservations('ctbin_py5.xml')
        self.test_value(obs.size(), 2, 'Check number of output observations')

        # Check counts cubes
        evt = obs[0].events()
        self._check_cube(evt, 245)
        evt = obs[1].events()
        self._check_cube(evt, 245)

        # Load counts cubes and check content
        evt = gammalib.GCTAEventCube('cntcube_py5_cta_00001.fits')
        self._check_cube(evt, 245)
        evt = gammalib.GCTAEventCube('cntcube_py5_cta_00002.fits')
        self._check_cube(evt, 245)

        # Return
        return
Exemple #29
0
    def run(self):
        """
        Run the script.
        """
        # Switch screen logging on in debug mode
        if self.logDebug():
            self.log.cout(True)

        # Get parameters
        self.get_parameters()
        
        #  Write input parameters into logger
        if self.logTerse():
            self.log_parameters()
            self.log("\n")
        
        # Write observation into logger
        if self.logTerse():
            self.log("\n")
            self.log.header1("Observation")
            self.log(str(self.obs))
            self.log("\n")

        # Write header
        if self.logTerse():
            self.log("\n")
            self.log.header1("Adjust model parameters")

        # Adjust model parameters dependent on input user parameters
        for model in self.obs.models():
            
            # Set TS flag for all models to false.
            # Source of interest will be set to true later
            model.tscalc(False)
            
            # Log model name
            if self.logExplicit():
                self.log.header3(model.name())
            
            # Deal with the source of interest    
            if model.name() == self.m_srcname:
                if self.m_calc_ts:
                    model.tscalc(True)
                
            elif self.m_fix_bkg and not model.classname() == "GModelSky":
                for par in model:
                    if par.is_free() and self.logExplicit():
                        self.log(" Fixing \""+par.name()+"\"\n")
                    par.fix()
        
            elif self.m_fix_srcs and model.classname() == "GModelSky":
                for par in model:
                    if par.is_free() and self.logExplicit():
                        self.log(" Fixing \""+par.name()+"\"\n")
                    par.fix()
        
        # Write header
        if self.logTerse():
            self.log("\n")
            self.log.header1("Generate lightcurve")      
        
        # Initialise FITS Table with extension "LIGHTCURVE"
        table = gammalib.GFitsBinTable(self.m_tbins.size())
        table.extname("LIGHTCURVE")
        
        # Add Header for compatibility with gammalib.GMWLSpectrum
        table.card("INSTRUME", "CTA", "Name of Instrument")
        table.card("TELESCOP", "CTA", "Name of Telescope")
             
        # Create FITS table columns        
        MJD = gammalib.GFitsTableDoubleCol("MJD", self.m_tbins.size())
        MJD.unit("days")
        e_MJD = gammalib.GFitsTableDoubleCol("e_MJD", self.m_tbins.size())
        e_MJD.unit("days")
        
        # Create a FITS column for every free parameter
        columns = []
        for par in self.obs.models()[self.m_srcname]:
            if par.is_free():
                col = gammalib.GFitsTableDoubleCol(par.name(), self.m_tbins.size())
                col.unit(par.unit())
                columns.append(col)
                e_col = gammalib.GFitsTableDoubleCol("e_"+par.name(), self.m_tbins.size())
                e_col.unit(par.unit())
                columns.append(e_col)
        
        # Create TS and upper limit columns
        TSvalues    = gammalib.GFitsTableDoubleCol("TS", self.m_tbins.size())
        ulim_values = gammalib.GFitsTableDoubleCol("UpperLimit", self.m_tbins.size())
        ulim_values.unit("ph/cm2/s")

        # Loop over energy bins
        for i in range(self.m_tbins.size()):

            # Log information
            if self.logTerse():
                self.log("\n")
                self.log.header2("Time bin "+str(i))

            # Get time boundaries
            tmin = self.m_tbins.tstart(i)
            tmax = self.m_tbins.tstop(i)
            
            # Compute time bin center and time width
            tmean   = (tmin + tmax)
            tmean  *= 0.5
            twidth  = (tmax - tmin)
            twidth *= 0.5 

            # Store time as MJD
            MJD[i] = tmean.mjd()
            e_MJD[i] = twidth.days()
            
            # Log information
            if self.logExplicit():
                self.log.header3("Selecting events")
                     
            # Select events
            select = ctools.ctselect(self.obs)
            select["emin"].real(self.m_emin)    
            select["emax"].real(self.m_emax) 
            select["tmin"].real(tmin.convert(select.time_reference()))
            select["tmax"].real(tmax.convert(select.time_reference()))
            select["rad"].value("UNDEFINED")
            select["ra"].value("UNDEFINED")
            select["dec"].value("UNDEFINED")
            select.run()  

            # Retrieve observation
            obs = select.obs()
             
            # Binned analysis
            if self.m_binned:

                # Header
                if self.logTerse():
                    self.log.header3("Binning events")
                
                # Bin events
                bin = ctools.ctbin(select.obs())
                bin["usepnt"].boolean(False)
                bin["ebinalg"].string("LOG")
                bin["xref"].real(self.m_xref)
                bin["yref"].real(self.m_yref)
                bin["binsz"].real(self.m_binsz)
                bin["nxpix"].integer(self.m_nxpix)
                bin["nypix"].integer(self.m_nypix)
                bin["enumbins"].integer(self.m_ebins)
                bin["emin"].real(self.m_emin)
                bin["emax"].real(self.m_emax)        
                bin["coordsys"].string(self.m_coordsys)
                bin["proj"].string(self.m_proj)            
                bin.run()
                
                # Header
                if self.logTerse():
                    self.log.header3("Creating exposure cube")
                
                # Create exposure cube
                expcube = ctools.ctexpcube(select.obs())
                expcube["incube"].filename("NONE")
                expcube["usepnt"].boolean(False)
                expcube["ebinalg"].string("LOG")
                expcube["xref"].real(self.m_xref)
                expcube["yref"].real(self.m_yref)
                expcube["binsz"].real(self.m_binsz)
                expcube["nxpix"].integer(self.m_nxpix)
                expcube["nypix"].integer(self.m_nypix)
                expcube["enumbins"].integer(self.m_ebins)
                expcube["emin"].real(self.m_emin)
                expcube["emax"].real(self.m_emax)   
                expcube["coordsys"].string(self.m_coordsys)
                expcube["proj"].string(self.m_proj)               
                expcube.run()
                
                # Header
                if self.logTerse():
                    self.log.header3("Creating PSF cube")
                
                # Create psf cube
                psfcube = ctools.ctpsfcube(select.obs())
                psfcube["incube"].filename("NONE")
                psfcube["usepnt"].boolean(False)
                psfcube["ebinalg"].string("LOG")
                psfcube["xref"].real(self.m_xref)
                psfcube["yref"].real(self.m_yref)
                psfcube["binsz"].real(self.m_binsz)
                psfcube["nxpix"].integer(self.m_nxpix)
                psfcube["nypix"].integer(self.m_nypix)
                psfcube["enumbins"].integer(self.m_ebins)
                psfcube["emin"].real(self.m_emin)
                psfcube["emax"].real(self.m_emax)    
                psfcube["coordsys"].string(self.m_coordsys)
                psfcube["proj"].string(self.m_proj)               
                psfcube.run()
                
                # Header
                if self.logTerse():
                    self.log.header3("Creating background cube")
                
                # Create background cube
                bkgcube = ctools.ctbkgcube(select.obs())
                bkgcube["incube"].filename("NONE")
                bkgcube["usepnt"].boolean(False)
                bkgcube["ebinalg"].string("LOG")
                bkgcube["xref"].real(self.m_xref)
                bkgcube["yref"].real(self.m_yref)
                bkgcube["binsz"].real(self.m_binsz)
                bkgcube["nxpix"].integer(self.m_nxpix)
                bkgcube["nypix"].integer(self.m_nypix)
                bkgcube["enumbins"].integer(self.m_ebins)
                bkgcube["emin"].real(self.m_emin)
                bkgcube["emax"].real(self.m_emax)   
                bkgcube["coordsys"].string(self.m_coordsys)
                bkgcube["proj"].string(self.m_proj)                
                bkgcube.run()
                
                # Set new binned observation
                obs = bin.obs()
                
                # Set precomputed binned response
                obs[0].response(expcube.expcube(), psfcube.psfcube(), bkgcube.bkgcube())

                # Get new models
                models = bkgcube.models()
                
                # Fix background models if required
                if self.m_fix_bkg:
                    for model in models:
                        if not model.classname() == "GModelSky":
                            for par in model:
                                par.fix()
                                
                # Set new models to binned observation           
                obs.models(models)
                
            # Header
            if self.logTerse():
                self.log.header3("Performing fit")
                             
            # Likelihood
            like = ctools.ctlike(obs)
            like.run()
            
            # Skip bin if no event was present
            if like.obs().logL() == 0.0:
                
                # Log information
                if self.logTerse():
                    self.log("No event in this time bin. Bin is skipped\n")

                # Set all values to 0
                for col in columns:
                    col[i] = 0.0
                TSvalues[i]    = 0.0
                ulim_values[i] = 0.0
                continue
                         
            # Get results
            fitted_models = like.obs().models()
            source        = fitted_models[self.m_srcname]

            # Calculate Upper Limit            
            ulimit_value = -1.0
            if self.m_calc_ulimit:
                
                # Logging information
                if self.logTerse():
                    self.log.header3("Computing upper limit")
                  
                # Create upper limit object  
                ulimit = ctools.ctulimit(like.obs())
                ulimit["srcname"].string(self.m_srcname)
                ulimit["eref"].real(1.0)
                
                # Try to run upper limit and catch exceptions
                try:
                    ulimit.run()
                    ulimit_value = ulimit.flux_ulimit()
                except:
                    if self.logTerse():
                        self.log("Upper limit calculation failed\n")
                    ulimit_value = -1.0
            
            # Get TS value
            TS = -1.0
            if self.m_calc_ts:
                TS = source.ts() 
            
            # Set values for storage
            TSvalues[i] = TS
            
            # Set FITS column values
            for col in columns:
                if "e_" == col.name()[:2]:
                    col[i] = source.spectral()[col.name()[2:]].error()
                else:
                    col[i] = source.spectral()[col.name()].value()
            
            # Store upper limit value if available
            if ulimit_value > 0.0:
                ulim_values[i] = ulimit_value
         
            # Log information
            if self.logExplicit(): 
                self.log.header3("Results of bin "+str(i)+": MJD "+str(tmin.mjd())+"-"+str(tmax.mjd()))
                for col in columns:
                    if "e_" == col.name()[:2]:
                        continue
                    value = source.spectral()[col.name()].value()
                    error = source.spectral()[col.name()].error()
                    unit = source.spectral()[col.name()].unit()
                    self.log(" > "+col.name()+": "+str(value)+" +- "+str(error)+" "+unit+"\n")
                if self.m_calc_ts and TSvalues[i] > 0.0:
                    self.log(" > TS = "+str(TS)+" \n")
                if self.m_calc_ulimit and ulim_values[i] > 0.0:
                    self.log(" > UL = "+str(ulim_values[i])+" [ph/cm2/s]")
                self.log("\n")

        # Append filles columns to fits table    
        table.append(MJD)
        table.append(e_MJD)
        for col in columns:
            table.append(col)
        table.append(TSvalues)
        table.append(ulim_values)
        
        # Create the FITS file now
        self.fits = gammalib.GFits()
        self.fits.append(table)
            
        # Return
        return
Exemple #30
0
    def _test_python(self):
        """
        Test ctbin from Python
        """
        # Set-up ctbin
        bin = ctools.ctbin()
        bin['inobs'] = self._events
        bin['outcube'] = 'cntmap.fits'
        bin['ebinalg'] = 'LOG'
        bin['emin'] = 0.1
        bin['emax'] = 100.0
        bin['enumbins'] = 20
        bin['nxpix'] = 200
        bin['nypix'] = 200
        bin['binsz'] = 0.02
        bin['coordsys'] = 'CEL'
        bin['proj'] = 'CAR'
        bin['xref'] = 83.63
        bin['yref'] = 22.01
        bin['logfile'] = 'ctbin_py1.log'
        bin['chatter'] = 2

        # Run ctbin tool
        #bin.logFileOpen()   # Make sure we get a log file, but this leads
        # to a segmentation fault on Linux, e.g. CentOS 6.
        # see issue #1823 (need to fix that)
        bin.run()

        # Check content of observation and cube
        self._check_observation(bin, 5542)
        self._check_cube(bin.cube(), 5542)

        # Test copy constructor
        cpy_bin = bin.copy()

        # Check content of observation and cube
        self._check_observation(cpy_bin, 5542)
        self._check_cube(cpy_bin.cube(), 5542)

        # Run copy of ctbin tool again
        cpy_bin['logfile'] = 'ctbin_py2.log'
        cpy_bin['chatter'] = 3
        cpy_bin.run()

        # Check content of observation and cube. We expect now an empty
        # event cube as on input the observation is binned, and any binned
        # observation will be skipped, hence the counts cube should be
        # empty.
        self._check_observation(cpy_bin, 0)
        self._check_cube(cpy_bin.cube(), 0)

        # Save counts cube
        bin.save()

        # Load counts cube and check content.
        evt = gammalib.GCTAEventCube('cntmap.fits')
        self._check_cube(evt, 5542)

        # Prepare observation container for stacked analysis
        cta = gammalib.GCTAObservation(self._events)
        obs = gammalib.GObservations()
        cta.id('0001')
        obs.append(cta)
        cta.id('0002')
        obs.append(cta)
        cta.id('0003')
        obs.append(cta)

        # Set-up ctbin using an observation container
        bin = ctools.ctbin(obs)
        bin['outcube'] = 'cntmap.fits'
        bin['ebinalg'] = 'LOG'
        bin['emin'] = 0.1
        bin['emax'] = 100.0
        bin['enumbins'] = 20
        bin['nxpix'] = 200
        bin['nypix'] = 200
        bin['binsz'] = 0.02
        bin['coordsys'] = 'CEL'
        bin['proj'] = 'CAR'
        bin['xref'] = 83.63
        bin['yref'] = 22.01
        bin['logfile'] = 'ctbin_py3.log'
        bin['chatter'] = 4

        # Run ctbin tool
        bin.logFileOpen()  # Make sure we get a log file
        bin.run()

        # Check content of observation and cube (need multiplier=3 since
        # three identical observations have been appended)
        self._check_observation(bin, 5542, multiplier=3)
        self._check_cube(bin.cube(), 5542, multiplier=3)

        # Set-up ctbin using an observation container
        bin = ctools.ctbin(obs)
        bin['outcube'] = 'cntmap2.fits'
        bin['ebinalg'] = 'LOG'
        bin['emin'] = 0.1
        bin['emax'] = 100.0
        bin['enumbins'] = 20
        bin['nxpix'] = 200
        bin['nypix'] = 200
        bin['binsz'] = 0.02
        bin['coordsys'] = 'CEL'
        bin['proj'] = 'CAR'
        bin['xref'] = 83.63
        bin['yref'] = 22.01
        bin['logfile'] = 'ctbin_py4.log'
        bin['chatter'] = 4

        # Execute ctbin tool
        bin.execute()

        # Load counts cube and check content.
        evt = gammalib.GCTAEventCube('cntmap2.fits')
        self._check_cube(evt, 5542, multiplier=3)

        # Return
        return
def binned_pipeline(model_name, duration):
    """
    Binned analysis pipeline.
    """
    # Set script parameters
    caldb = "prod2"
    irf = "South_50h"
    ra = 83.63
    dec = 22.01
    rad_sim = 10.0
    tstart = 0.0
    tstop = duration
    emin = 0.1
    emax = 100.0
    enumbins = 40
    nxpix = 200
    nypix = 200
    binsz = 0.02
    coordsys = "CEL"
    proj = "CAR"

    # Get start CPU time
    cpu_start = time.clock()

    # Simulate events
    sim = ctools.ctobssim()
    sim["inmodel"] = model_name
    sim["caldb"] = caldb
    sim["irf"] = irf
    sim["ra"] = ra
    sim["dec"] = dec
    sim["rad"] = rad_sim
    sim["tmin"] = tstart
    sim["tmax"] = tstop
    sim["emin"] = emin
    sim["emax"] = emax
    sim.run()

    # Bin events into counts map
    bin = ctools.ctbin(sim.obs())
    bin["ebinalg"] = "LOG"
    bin["emin"] = emin
    bin["emax"] = emax
    bin["enumbins"] = enumbins
    bin["nxpix"] = nxpix
    bin["nypix"] = nypix
    bin["binsz"] = binsz
    bin["coordsys"] = coordsys
    bin["xref"] = ra
    bin["yref"] = dec
    bin["proj"] = proj
    bin.run()

    # Get ctlike start CPU time
    cpu_ctlike = time.clock()

    # Perform maximum likelihood fitting
    like = ctools.ctlike(bin.obs())
    like.run()

    # Get stop CPU time and compute elapsed times
    cpu_stop = time.clock()
    cpu_elapsed = cpu_stop - cpu_start
    cpu_ctlike = cpu_stop - cpu_ctlike

    # Return
    return cpu_elapsed, cpu_ctlike
def run_pipeline(obs,
                 emin=0.1,
                 emax=100.0,
                 enumbins=20,
                 nxpix=200,
                 nypix=200,
                 binsz=0.02,
                 coordsys='CEL',
                 proj='CAR',
                 debug=False):
    """
    Simulation and binned analysis pipeline

    Parameters
    ----------
    obs : `~gammalib.GObservations`
        Observation container
    emin : float, optional
        Minimum energy (TeV)
    emax : float, optional
        Maximum energy (TeV)
    enumbins : int, optional
        Number of energy bins
    nxpix : int, optional
        Number of pixels in X axis
    nypix : int, optional
        Number of pixels in Y axis
    binsz : float, optional
        Pixel size (deg)
    coordsys : str, optional
        Coordinate system
    proj : str, optional
        Coordinate projection
    debug : bool, optional
        Debug function
    """
    # Simulate events
    sim = ctools.ctobssim(obs)
    sim['debug'] = debug
    sim.run()

    # Bin events by looping over all observations in the container
    obs = gammalib.GObservations()
    obs.models(sim.obs().models())
    for run in sim.obs():

        # Create container with a single observation
        container = gammalib.GObservations()
        container.append(run)

        # Bin events for that observation
        bin = ctools.ctbin(container)
        bin['ebinalg'] = 'LOG'
        bin['emin'] = emin
        bin['emax'] = emax
        bin['enumbins'] = enumbins
        bin['nxpix'] = nxpix
        bin['nypix'] = nypix
        bin['binsz'] = binsz
        bin['coordsys'] = coordsys
        bin['usepnt'] = True
        bin['proj'] = proj
        bin.run()

        # Append result to observations
        obs.extend(bin.obs())

    # Perform maximum likelihood fitting
    like = ctools.ctlike(obs)
    like['debug'] = True  # Switch this always on for results in console
    like.run()

    # Return
    return
Exemple #33
0
def sim(obs, log=False, debug=False, seed=0, nbins=0, binsz=0.05, npix=200):
    """
    Simulate events for all observations in the container.
    
    Parameters:
     obs   - Observation container
    Keywords:
     log   - Create log file(s)
     debug - Create screen dump
     seed  - Seed value for simulations (default: 0)
     nbins - Number of energy bins (default: 0=unbinned)
     binsz - Pixel size for binned simulation (deg/pixel)
     npix  - Number of pixels in X and Y for binned simulation
    """
    # Allocate ctobssim application and set parameters
    sim = ctools.ctobssim(obs)
    sim['seed'].integer(seed)
        
    # Optionally open the log file
    if log:
        sim.logFileOpen()

    # Optionally switch-on debugging model
    if debug:
        sim["debug"].boolean(True)
    
    # Run ctobssim application. This will loop over all observations in the
    # container and simulation the events for each observation. Note that
    # events are not added together, they still apply to each observation
    # separately.
    sim.run()
    
    # Binned option?
    if nbins > 0:
    
        # Determine common energy boundaries for observations
        emin = None
        emax = None
        for run in sim.obs():
            run_emin = run.events().ebounds().emin().TeV()
            run_emax = run.events().ebounds().emax().TeV()
            if emin == None:
                emin = run_emin
            elif run_emin > emin:
                emin = run_emin
            if emax == None:
                emax = run_emax
            elif run_emax > emax:
                emax = run_emax
    
        # Allocate ctbin application and set parameters
        bin = ctools.ctbin(sim.obs())
        bin["ebinalg"].string("LOG")
        bin["emin"].real(emin)
        bin["emax"].real(emax)
        bin["enumbins"].integer(nbins)
        bin["usepnt"].boolean(True) # Use pointing for map centre
        bin["nxpix"].integer(npix)
        bin["nypix"].integer(npix)
        bin["binsz"].real(binsz)
        bin["coordsys"].string("GAL")
        bin["proj"].string("TAN")
        
        # Optionally open the log file
        if log:
            bin.logFileOpen()

        # Optionally switch-on debugging model
        if debug:
            bin["debug"].boolean(True)

        # Run ctbin application. This will loop over all observations in
        # the container and bin the events in counts maps
        bin.run()
        
        # Make a deep copy of the observation that will be returned
        # (the ctbin object will go out of scope one the function is
        # left)
        obs = bin.obs().copy()
        
    else:
        
        # Make a deep copy of the observation that will be returned
        # (the ctobssim object will go out of scope one the function is
        # left)
        obs = sim.obs().copy()
 
    # Delete the simulation
    del sim
    
    # Return observation container
    return obs
Exemple #34
0
def counts_cube(output_dir,
                map_reso,
                map_coord,
                map_fov,
                emin,
                emax,
                enumbins,
                ebinalg,
                stack=True,
                logfile=None,
                silent=False):
    """
    Compute counts cube.
    http://cta.irap.omp.eu/ctools/users/reference_manual/ctbin.html

    Parameters
    ----------
    - output_dir (str): directory where to get input files and 
    save outputs
    - map_reso (float): the resolution of the map (can be an
    astropy.unit object, or in deg)
    - map_coord (float): a skycoord object that give the center of the map
    - map_fov (float): the field of view of the map (can be an 
    astropy.unit object, or in deg)
    - emin/emax (float): min and max energy in TeV
    - enumbins (int): the number of energy bins
    - ebinalg (str): the energy binning algorithm
    - stack (bool): do we use stacking of individual event files or not
    - silent (bool): use this keyword to print information

    Outputs
    --------
    - Ana_Countscube.fits: the fits file cubed data, in case stack is requested
    - Ana_Countscube.xml: the xml file cubed data, in case stack is not requested
    - Ana_Countscubecta_{obsIDs}.fits: the fits files of individual event files
    cubed data, in case stack is not requested

    """

    npix = utilities.npix_from_fov_def(map_fov, map_reso)

    ctscube = ctools.ctbin()

    ctscube['inobs'] = output_dir + '/Ana_EventsSelected.xml'
    if stack:
        ctscube['outobs'] = output_dir + '/Ana_Countscube.fits'
    else:
        ctscube['outobs'] = output_dir + '/Ana_Countscube.xml'
    ctscube['stack'] = stack
    ctscube['prefix'] = output_dir + '/Ana_Countscube'
    ctscube['ebinalg'] = ebinalg
    ctscube['emin'] = emin.to_value('TeV')
    ctscube['emax'] = emax.to_value('TeV')
    ctscube['enumbins'] = enumbins
    ctscube['ebinfile'] = 'NONE'
    ctscube['usepnt'] = False
    ctscube['nxpix'] = npix
    ctscube['nypix'] = npix
    ctscube['binsz'] = map_reso.to_value('deg')
    ctscube['coordsys'] = 'CEL'
    ctscube['proj'] = 'TAN'
    ctscube['xref'] = map_coord.icrs.ra.to_value('deg')
    ctscube['yref'] = map_coord.icrs.dec.to_value('deg')
    if logfile is not None: ctscube['logfile'] = logfile

    if logfile is not None: ctscube.logFileOpen()
    ctscube.execute()
    if logfile is not None: ctscube.logFileClose()

    if not silent:
        print(ctscube)
        print('')

    return ctscube
Exemple #35
0
def run_pipeline(obs, ra=83.63, dec=22.01, emin=0.1, emax=100.0,
                 enumbins=20, nxpix=200, nypix=200, binsz=0.02,
                 coordsys='CEL', proj='CAR', debug=False):
    """
    Simulation and stacked analysis pipeline

    Parameters
    ----------
    obs : `~gammalib.GObservations`
        Observation container
    ra : float, optional
        Right Ascension of counts cube centre (deg)
    dec : float, optional
        Declination of Region of counts cube centre (deg)
    emin : float, optional
        Minimum energy (TeV)
    emax : float, optional
        Maximum energy (TeV)
    enumbins : int, optional
        Number of energy bins
    nxpix : int, optional
        Number of pixels in X axis
    nypix : int, optional
        Number of pixels in Y axis
    binsz : float, optional
        Pixel size (deg)
    coordsys : str, optional
        Coordinate system
    proj : str, optional
        Coordinate projection
    debug : bool, optional
        Debug function
    """
    # Simulate events
    sim = ctools.ctobssim(obs)
    sim['debug']     = debug
    sim.run()

    # Bin events into counts map
    bin = ctools.ctbin(sim.obs())
    bin['ebinalg']  = 'LOG'
    bin['emin']     = emin
    bin['emax']     = emax
    bin['enumbins'] = enumbins
    bin['nxpix']    = nxpix
    bin['nypix']    = nypix
    bin['binsz']    = binsz
    bin['coordsys'] = coordsys
    bin['proj']     = proj
    bin['xref']     = ra
    bin['yref']     = dec
    bin['debug']    = debug
    bin.run()

    # Create exposure cube
    expcube = ctools.ctexpcube(sim.obs())
    expcube['incube']   = 'NONE'
    expcube['ebinalg']  = 'LOG'
    expcube['emin']     = emin
    expcube['emax']     = emax
    expcube['enumbins'] = enumbins
    expcube['nxpix']    = nxpix
    expcube['nypix']    = nypix
    expcube['binsz']    = binsz
    expcube['coordsys'] = coordsys
    expcube['proj']     = proj
    expcube['xref']     = ra
    expcube['yref']     = dec
    expcube['debug']    = debug
    expcube.run()

    # Create PSF cube
    psfcube = ctools.ctpsfcube(sim.obs())
    psfcube['incube']   = 'NONE'
    psfcube['ebinalg']  = 'LOG'
    psfcube['emin']     = emin
    psfcube['emax']     = emax
    psfcube['enumbins'] = enumbins
    psfcube['nxpix']    = 10
    psfcube['nypix']    = 10
    psfcube['binsz']    = 1.0
    psfcube['coordsys'] = coordsys
    psfcube['proj']     = proj
    psfcube['xref']     = ra
    psfcube['yref']     = dec
    psfcube['debug']    = debug
    psfcube.run()

    # Create background cube
    bkgcube = ctools.ctbkgcube(sim.obs())
    bkgcube['incube']   = 'NONE'
    bkgcube['ebinalg']  = 'LOG'
    bkgcube['emin']     = emin
    bkgcube['emax']     = emax
    bkgcube['enumbins'] = enumbins
    bkgcube['nxpix']    = 10
    bkgcube['nypix']    = 10
    bkgcube['binsz']    = 1.0
    bkgcube['coordsys'] = coordsys
    bkgcube['proj']     = proj
    bkgcube['xref']     = ra
    bkgcube['yref']     = dec
    bkgcube['debug']    = debug
    bkgcube.run()

    # Attach background model to observation container
    bin.obs().models(bkgcube.models())

    # Set Exposure and Psf cube for first CTA observation
    # (ctbin will create an observation with a single container)
    bin.obs()[0].response(expcube.expcube(), psfcube.psfcube(), bkgcube.bkgcube())

    # Perform maximum likelihood fitting
    like = ctools.ctlike(bin.obs())
    like['debug'] = True # Switch this always on for results in console
    like.run()

    # Return
    return
Exemple #36
0
    def run(self):
        """
        Run the script.
        """
        # Switch screen logging on in debug mode
        if self.logDebug():
            self.log.cout(True)

        # Get parameters
        self.get_parameters()

        #  Write input parameters into logger
        if self.logTerse():
            self.log_parameters()
            self.log("\n")

        # Write observation into logger
        if self.logTerse():
            self.log("\n")
            self.log.header1("Observation")
            self.log(str(self.obs))
            self.log("\n")

        # Use input file directly if given
        if self.m_use_maps:
            countmap = gammalib.GSkyMap(self["inobs"].filename())
            modelmap = gammalib.GSkyMap(self.m_modcube)

        else:

            if self.m_skip_binning:
                cta_counts_cube = gammalib.GCTAEventCube(self.obs[0].events().clone())   

            else:

                # Write header
                if self.logTerse():
                    self.log("\n")
                    self.log.header1("Generate binned map (ctbin)")

                # Create countsmap
                bin = ctools.ctbin(self.obs)
                bin["nxpix"].integer(self.m_nxpix)
                bin["nypix"].integer(self.m_nypix)
                bin["proj"].string(self.m_proj)
                bin["coordsys"].string(self.m_coordsys)
                bin["xref"].real(self.m_xref)
                bin["yref"].real(self.m_yref)
                bin["enumbins"].integer(self.m_enumbins)
                bin["ebinalg"].string(self.m_ebinalg)
                bin["emin"].real(self.m_emin)
                bin["emax"].real(self.m_emax)
                bin["binsz"].real(self.m_binsz)
                bin["chatter"].integer(self.m_chatter)
                bin["clobber"].boolean(self.m_clobber)
                bin["debug"].boolean(self.m_debug)
                bin.run()

                # Retrieve counts cube
                cta_counts_cube = bin.cube()

            # Assign GCTAEventCube to skymap
            countmap = cta_counts_cube.map()

            # Write header
            if self.logTerse():
                self.log("\n")
                self.log.header1("Generate model map (ctmodel)")

            # Create model map
            model = ctools.ctmodel(self.obs)
            model.cube(cta_counts_cube)
            model["chatter"].integer(self.m_chatter)
            model["clobber"].boolean(self.m_clobber)
            model["debug"].boolean(self.m_debug)
            model["edisp"].boolean(self.m_edisp)
            model.run()

            # Get model map into GSkyMap object
            modelmap = model.cube().map().copy()


        # Store counts map as residual map. Note that we need a
        # special construct here to avoid memory leaks. This seems
        # to be a SWIG feature as SWIG creates a new object when
        # calling bin.cube()
        #residualmap = bin.cube().map() 
        self.resmap = countmap.copy()
        self.resmap.stack_maps()
        modelmap.stack_maps()

        # Continue calculations depending on given algorithm
        if self.m_algorithm == "SUB":

            # Subtract maps 
            self.resmap -= modelmap

        elif self.m_algorithm == "SUBDIV":

            # Subtract and divide by model map
            self.resmap -= modelmap
            self.resmap /= modelmap
            #for pixel in modelmap:
            #    if pixel != 0.0:
            #        pixel = 1.0/pixel
            #self.resmap *= modelmap

        elif self.m_algorithm == "SUBDIVSQRT":

            # subtract and divide by sqrt of model map
            self.resmap -= modelmap
            self.resmap /= modelmap.sqrt()
            #for pixel in modelmap:
            #    if pixel != 0.0:
            #        pixel = 1.0/math.sqrt(pixel)
            #self.resmap *= modelmap

        else:

            # Raise error if algorithm is unkown
            raise TypeError("Algorithm \""+self.m_algorithm+"\" not known")

        # Return
        return
Exemple #37
0
def get_stacked_obs(cls, obs):
    """
    Bin an observation and return an observation container with a single
    binned observation

    Parameters
    ----------
    cls : `~ctools.cscript`
        cscript class
    obs : `~gammalib.GObservations`
        Observation container

    Returns
    -------
    obs : `~gammalib.GObservations`
        Observation container where the first observation is a binned observation
    """
    # Write header
    if cls._logExplicit():
        cls._log.header3('Binning events')
    
    # Bin events
    cntcube = ctools.ctbin(obs)
    cntcube['usepnt']   = False
    cntcube['ebinalg']  = 'LOG'
    cntcube['xref']     = cls['xref'].real()
    cntcube['yref']     = cls['yref'].real()
    cntcube['binsz']    = cls['binsz'].real()
    cntcube['nxpix']    = cls['nxpix'].integer()
    cntcube['nypix']    = cls['nypix'].integer()
    cntcube['enumbins'] = cls['enumbins'].integer()
    cntcube['emin']     = cls['emin'].real()
    cntcube['emax']     = cls['emax'].real()
    cntcube['coordsys'] = cls['coordsys'].string()
    cntcube['proj']     = cls['proj'].string()
    cntcube.run()

    # Write header
    if cls._logExplicit():
        cls._log.header3('Creating stacked response')

    # Get stacked response
    response = get_stacked_response(obs,
                                    cls['xref'].real(),
                                    cls['yref'].real(),
                                    binsz=cls['binsz'].real(),
                                    nxpix=cls['nxpix'].integer(),
                                    nypix=cls['nypix'].integer(),
                                    emin=cls['emin'].real(),
                                    emax=cls['emax'].real(),
                                    enumbins=cls['enumbins'].integer(),
                                    edisp=cls['edisp'].boolean(),
                                    coordsys=cls['coordsys'].string(),
                                    proj=cls['proj'].string())

    # Retrieve a new oberservation container
    new_obs = cntcube.obs().copy()

    # Set stacked response
    if cls['edisp'].boolean():
        new_obs[0].response(response['expcube'], response['psfcube'],
                            response['edispcube'], response['bkgcube'])
    else:
        new_obs[0].response(response['expcube'], response['psfcube'],
                            response['bkgcube'])

    # Get new models
    models = response['models']

    # Set models for new oberservation container
    new_obs.models(models)

    # Return new oberservation container
    return new_obs
def run_pipeline(obs, ra=83.63, dec=22.01, emin=0.1, emax=100.0,
                 enumbins=20, nxpix=200, nypix=200, binsz=0.02,
                 coordsys="CEL", proj="CAR",
                 model="${CTOOLS}/share/models/crab.xml",
                 caldb="prod2", irf="South_50h",
                 debug=False):
    """
    Simulation and stacked analysis pipeline.

    Keywords:
     ra       - RA of cube centre [deg] (default: 83.6331)
     dec      - DEC of cube centre [deg] (default: 22.0145)
     emin     - Minimum energy of cube [TeV] (default: 0.1)
     emax     - Maximum energy of cube [TeV] (default: 100.0)
     enumbins - Number of energy bins in cube (default: 20)
     nxpix    - Number of RA pixels in cube (default: 200)
     nypix    - Number of DEC pixels in cube (default: 200)
     binsz    - Spatial cube bin size [deg] (default: 0.02)
     coordsys - Cube coordinate system (CEL or GAL)
     proj     - Cube World Coordinate System (WCS) projection
     debug    - Enable debugging (default: False)
    """
    # Simulate events
    sim = ctools.ctobssim(obs)
    sim["debug"]     = debug
    sim["outevents"] = "obs.xml"
    sim.execute()

    # Bin events into counts map
    bin = ctools.ctbin()
    bin["inobs"]    = "obs.xml"
    bin["outcube"]  = "cntcube.fits"
    bin["ebinalg"]  = "LOG"
    bin["emin"]     = emin
    bin["emax"]     = emax
    bin["enumbins"] = enumbins
    bin["nxpix"]    = nxpix
    bin["nypix"]    = nypix
    bin["binsz"]    = binsz
    bin["coordsys"] = coordsys
    bin["proj"]     = proj
    bin["xref"]     = ra
    bin["yref"]     = dec
    bin["debug"]    = debug
    bin.execute()

    # Create exposure cube
    expcube = ctools.ctexpcube()
    expcube["inobs"]    = "obs.xml"
    expcube["incube"]   = "cntcube.fits"
    expcube["outcube"]  = "expcube.fits"
    expcube["caldb"]    = caldb
    expcube["irf"]      = irf
    expcube["ebinalg"]  = "LOG"
    expcube["emin"]     = emin
    expcube["emax"]     = emax
    expcube["enumbins"] = enumbins
    expcube["nxpix"]    = nxpix
    expcube["nypix"]    = nypix
    expcube["binsz"]    = binsz
    expcube["coordsys"] = coordsys
    expcube["proj"]     = proj
    expcube["xref"]     = ra
    expcube["yref"]     = dec
    expcube["debug"]    = debug
    expcube.execute()

    # Create PSF cube
    psfcube = ctools.ctpsfcube()
    psfcube["inobs"]    = "obs.xml"
    psfcube["incube"]   = "NONE"
    psfcube["outcube"]  = "psfcube.fits"
    psfcube["caldb"]    = caldb
    psfcube["irf"]      = irf
    psfcube["ebinalg"]  = "LOG"
    psfcube["emin"]     = emin
    psfcube["emax"]     = emax
    psfcube["enumbins"] = enumbins
    psfcube["nxpix"]    = 10
    psfcube["nypix"]    = 10
    psfcube["binsz"]    = 1.0
    psfcube["coordsys"] = coordsys
    psfcube["proj"]     = proj
    psfcube["xref"]     = ra
    psfcube["yref"]     = dec
    psfcube["debug"]    = debug
    psfcube.execute()

    # Create background cube
    bkgcube = ctools.ctbkgcube()
    bkgcube["inobs"]    = "obs.xml"
    bkgcube["inmodel"]  = model
    bkgcube["incube"]   = "cntcube.fits"
    bkgcube["outcube"]  = "bkgcube.fits"
    bkgcube["outmodel"] = "model_bkg.xml"
    bkgcube["caldb"]    = caldb
    bkgcube["irf"]      = irf
    bkgcube["ebinalg"]  = "LOG"
    bkgcube["emin"]     = emin
    bkgcube["emax"]     = emax
    bkgcube["enumbins"] = enumbins
    bkgcube["nxpix"]    = 10
    bkgcube["nypix"]    = 10
    bkgcube["binsz"]    = 1.0
    bkgcube["coordsys"] = coordsys
    bkgcube["proj"]     = proj
    bkgcube["xref"]     = ra
    bkgcube["yref"]     = dec
    bkgcube["debug"]    = debug
    bkgcube.execute()

    # Perform maximum likelihood fitting
    like = ctools.ctlike()
    like["inobs"]    = "cntcube.fits"
    like["inmodel"]  = "model_bkg.xml"
    like["outmodel"] = "fit_results.xml"
    like["expcube"]  = "expcube.fits"
    like["psfcube"]  = "psfcube.fits"
    like["bkgcube"]  = "bkgcube.fits"
    like["caldb"]    = caldb
    like["irf"]      = irf
    like["debug"]    = True # Switch this always on for results in console
    like.execute()

    # Return
    return
def binned_pipeline(duration):
    """
    Binned analysis pipeline.
    """
    # Set script parameters
    model_name  = "${CTOOLS}/share/models/crab.xml"
    caldb       = "prod2"
    irf         = "South_50h"
    ra          =   83.63
    dec         =   22.01
    rad_sim     =   10.0
    tstart      =    0.0
    tstop       = duration
    emin        =    0.1
    emax        =  100.0
    enumbins    =   20
    nxpix       =  200
    nypix       =  200
    binsz       =    0.02
    coordsys    = "CEL"
    proj        = "CAR"

    # Get start CPU time
    tstart = time.clock()

    # Simulate events
    sim = ctools.ctobssim()
    sim["inmodel"].filename(model_name)
    sim["caldb"].string(caldb)
    sim["irf"].string(irf)
    sim["ra"].real(ra)
    sim["dec"].real(dec)
    sim["rad"].real(rad_sim)
    sim["tmin"].real(tstart)
    sim["tmax"].real(tstop)
    sim["emin"].real(emin)
    sim["emax"].real(emax)
    sim.run()

    # Bin events into counts map
    bin = ctools.ctbin(sim.obs())
    bin["ebinalg"].string("LOG")
    bin["emin"].real(emin)
    bin["emax"].real(emax)
    bin["enumbins"].integer(enumbins)
    bin["nxpix"].integer(nxpix)
    bin["nypix"].integer(nypix)
    bin["binsz"].real(binsz)
    bin["coordsys"].string(coordsys)
    bin["xref"].real(ra)
    bin["yref"].real(dec)
    bin["proj"].string(proj)
    bin.run()

    # Get ctlike start CPU time
    tctlike = time.clock()

    # Perform maximum likelihood fitting
    like = ctools.ctlike(bin.obs())
    like.run()

    # Get stop CPU time
    tstop    = time.clock()
    telapsed = tstop - tstart
    tctlike  = tstop - tctlike
	
    # Return
    return telapsed, tctlike
Exemple #40
0
    def run(self):
        """
        Run the script.
        """
        # Switch screen logging on in debug mode
        if self.logDebug():
            self.log.cout(True)

        # Get parameters
        self.get_parameters()
        
        #  Write input parameters into logger
        if self.logTerse():
            self.log_parameters()
            self.log("\n")
        
        # Write observation into logger
        if self.logTerse():
            self.log("\n")
            self.log.header1("Observation")
            self.log(str(self.obs))
            self.log("\n")

        # Write header
        if self.logTerse():
            self.log("\n")
            self.log.header1("Adjust model parameters")

        # Adjust model parameters dependent on input user parameters
        for model in self.obs.models():
            
            # Set TS flag for all models to false.
            # Source of interest will be set to true later
            model.tscalc(False)
            
            # Log model name
            if self.logExplicit():
                self.log.header3(model.name())
            
            # Deal with the source of interest    
            if model.name() == self.m_srcname:
                for par in model:
                    if par.is_free() and self.logExplicit():
                        self.log(" Fixing \""+par.name()+"\"\n")
                    par.fix()
                if par.is_fixed() and self.logExplicit():
                    self.log(" Freeing \""+par.name()+"\"\n")
                model.spectral()[0].free()
                if self.m_calc_ts:
                    model.tscalc(True)
                
            elif self.m_fix_bkg and not model.classname() == "GModelSky":
                for par in model:
                    if par.is_free() and self.logExplicit():
                        self.log(" Fixing \""+par.name()+"\"\n")
                    par.fix()
        
            elif self.m_fix_srcs and model.classname() == "GModelSky":
                for par in model:
                    if par.is_free() and self.logExplicit():
                        self.log(" Fixing \""+par.name()+"\"\n")
                    par.fix()
        
        # Write header
        if self.logTerse():
            self.log("\n")
            self.log.header1("Generate spectrum")      
        
        # Initialise FITS Table with extension "SPECTRUM"
        table = gammalib.GFitsBinTable(self.m_ebounds.size())
        table.extname("SPECTRUM")
        
        # Add Header for compatibility with gammalib.GMWLSpectrum
        table.card("INSTRUME", "CTA", "Name of Instrument")
        table.card("TELESCOP", "CTA", "Name of Telescope")
        
        # Create FITS table columns
        energy      = gammalib.GFitsTableDoubleCol("Energy", self.m_ebounds.size())
        energy.unit("TeV")
        energy_low  = gammalib.GFitsTableDoubleCol("ed_Energy", self.m_ebounds.size())
        energy_low.unit("TeV")
        energy_high  = gammalib.GFitsTableDoubleCol("eu_Energy", self.m_ebounds.size())
        energy_high.unit("TeV")
        flux        = gammalib.GFitsTableDoubleCol("Flux", self.m_ebounds.size())
        flux.unit("erg/cm2/s")
        flux_err    = gammalib.GFitsTableDoubleCol("e_Flux", self.m_ebounds.size())
        flux_err.unit("erg/cm2/s")
        TSvalues    = gammalib.GFitsTableDoubleCol("TS", self.m_ebounds.size())
        ulim_values = gammalib.GFitsTableDoubleCol("UpperLimit", self.m_ebounds.size())
        ulim_values.unit("erg/cm2/s")

        # Loop over energy bins
        for i in range(self.m_ebounds.size()):

            # Log information
            if self.logTerse():
                self.log("\n")
                self.log.header2("Energy bin "+str(i))

            # Get energy boundaries
            emin      = self.m_ebounds.emin(i)
            emax      = self.m_ebounds.emax(i)
            elogmean  = self.m_ebounds.elogmean(i)
            elogmean2 = elogmean.MeV() * elogmean.MeV()    
                        
            # Store energy as TeV
            energy[i] = elogmean.TeV()
            
            # Store energy errors
            energy_low[i]  = (elogmean - emin).TeV()
            energy_high[i] = (emax - elogmean).TeV()
            
            # Log information
            if self.logExplicit():
                    self.log.header3("Selecting events")
            
            # Select events
            select = ctools.ctselect(self.obs)
            select["emin"].real(emin.TeV())    
            select["emax"].real(emax.TeV()) 
            select["tmin"].value("UNDEFINED")
            select["tmax"].value("UNDEFINED")
            select["rad"].value("UNDEFINED")
            select["ra"].value("UNDEFINED")
            select["dec"].value("UNDEFINED")
            select.run()  

            # Retrieve observation
            obs = select.obs()

            # Binned analysis
            if self.m_binned:

                # Header
                if self.logTerse():
                    self.log.header3("Binning events")
                
                # Bin events
                bin = ctools.ctbin(select.obs())
                bin["usepnt"].boolean(False)
                bin["ebinalg"].string("LOG")
                bin["xref"].real(self.m_xref)
                bin["yref"].real(self.m_yref)
                bin["binsz"].real(self.m_binsz)
                bin["nxpix"].integer(self.m_nxpix)
                bin["nypix"].integer(self.m_nypix)
                bin["enumbins"].integer(self.m_ebins)
                bin["emin"].real(emin.TeV())
                bin["emax"].real(emax.TeV())        
                bin["coordsys"].string(self.m_coordsys)
                bin["proj"].string(self.m_proj)            
                bin.run()
                
                # Header
                if self.logTerse():
                    self.log.header3("Creating exposure cube")
                
                # Create exposure cube
                expcube = ctools.ctexpcube(select.obs())
                expcube["incube"].filename("NONE")
                expcube["usepnt"].boolean(False)
                expcube["ebinalg"].string("LOG")
                expcube["xref"].real(self.m_xref)
                expcube["yref"].real(self.m_yref)
                expcube["binsz"].real(self.m_binsz)
                expcube["nxpix"].integer(self.m_nxpix)
                expcube["nypix"].integer(self.m_nypix)
                expcube["enumbins"].integer(self.m_ebins)
                expcube["emin"].real(emin.TeV())
                expcube["emax"].real(emax.TeV()) 
                expcube["coordsys"].string(self.m_coordsys)
                expcube["proj"].string(self.m_proj)               
                expcube.run()
                
                # Header
                if self.logTerse():
                    self.log.header3("Creating PSF cube")
                
                # Create psf cube
                psfcube = ctools.ctpsfcube(select.obs())
                psfcube["incube"].filename("NONE")
                psfcube["usepnt"].boolean(False)
                psfcube["ebinalg"].string("LOG")
                psfcube["xref"].real(self.m_xref)
                psfcube["yref"].real(self.m_yref)
                psfcube["binsz"].real(self.m_binsz)
                psfcube["nxpix"].integer(self.m_nxpix)
                psfcube["nypix"].integer(self.m_nypix)
                psfcube["enumbins"].integer(self.m_ebins)
                psfcube["emin"].real(emin.TeV())
                psfcube["emax"].real(emax.TeV())  
                psfcube["coordsys"].string(self.m_coordsys)
                psfcube["proj"].string(self.m_proj)               
                psfcube.run()
                
                # Header
                if self.logTerse():
                    self.log.header3("Creating background cube")
                
                # Create background cube
                bkgcube = ctools.ctbkgcube(select.obs())
                bkgcube["incube"].filename("NONE")
                bkgcube["usepnt"].boolean(False)
                bkgcube["ebinalg"].string("LOG")
                bkgcube["xref"].real(self.m_xref)
                bkgcube["yref"].real(self.m_yref)
                bkgcube["binsz"].real(self.m_binsz)
                bkgcube["nxpix"].integer(self.m_nxpix)
                bkgcube["nypix"].integer(self.m_nypix)
                bkgcube["enumbins"].integer(self.m_ebins)
                bkgcube["emin"].real(emin.TeV())
                bkgcube["emax"].real(emax.TeV()) 
                bkgcube["coordsys"].string(self.m_coordsys)
                bkgcube["proj"].string(self.m_proj)                
                bkgcube.run()
                
                # Set new binned observation
                obs = bin.obs()
                
                # Set precomputed binned response
                obs[0].response(expcube.expcube(), psfcube.psfcube(), bkgcube.bkgcube())

                # Get new models
                models = bkgcube.models()
                
                # Fix background models if required
                if self.m_fix_bkg:
                    for model in models:
                        if not model.classname() == "GModelSky":
                            for par in model:
                                par.fix()
                                
                # Set new models to binned observation           
                obs.models(models)
                
            # Header
            if self.logTerse():
                self.log.header3("Performing fit")
                             
            # Likelihood
            like = ctools.ctlike(obs)
            like.run()
            
            # Skip bin if no event was present
            if like.obs().logL() == 0.0:
                
                # Log information
                if self.logTerse():
                    self.log("No event in this bin. Bin is skipped\n")

                # Set all values to 0
                flux[i]        = 0.0
                flux_err[i]    = 0.0
                TSvalues[i]    = 0.0
                ulim_values[i] = 0.0
                continue
                         
            # Get results
            fitted_models = like.obs().models()
            source        = fitted_models[self.m_srcname]

            # Calculate Upper Limit            
            ulimit_value = -1.0
            if self.m_calc_ulimit:
                
                # Logging information
                if self.logTerse():
                    self.log.header3("Computing upper limit")
                  
                # Create upper limit object  
                ulimit = ctools.ctulimit(like.obs())
                ulimit["srcname"].string(self.m_srcname)
                ulimit["eref"].real(elogmean.TeV())
                
                # Try to run upper limit and catch exceptions
                try:
                    ulimit.run()
                    ulimit_value = ulimit.diff_ulimit()
                except:
                    if self.logTerse():
                        self.log("Upper limit calculation failed\n")
                    ulimit_value = -1.0
            
            # Get TS value
            TS = -1.0
            if self.m_calc_ts:
                TS = source.ts() 
              
            # Get differential flux    
            fitted_flux = source.spectral().eval(elogmean,gammalib.GTime())
            
            # Compute flux error
            parvalue  = source.spectral()[0].value()
            rel_error = source.spectral()[0].error()/parvalue        
            e_flux    = fitted_flux*rel_error
            
            # Set values for storage
            TSvalues[i] = TS
            
            # Convert fluxes to nuFnu
            flux[i]     = fitted_flux * elogmean2 * gammalib.MeV2erg
            flux_err[i] = e_flux      * elogmean2 * gammalib.MeV2erg
            if ulimit_value > 0.0:
                ulim_values[i] = ulimit_value * elogmean2 * gammalib.MeV2erg
         
            # Log information
            if self.logExplicit(): 
                self.log("Bin "+str(i)+" ["+str(emin.TeV())+"-"+str(emax.TeV())+"] TeV: ")
                self.log("Flux = "+str(flux[i]))
                self.log(" +- "+str(flux_err[i])+" [erg/cm2/s]")
                if self.m_calc_ts and TSvalues[i] > 0.0:
                    self.log(", TS = "+str(TS))
                if self.m_calc_ulimit and ulim_values[i] > 0.0:
                    self.log(", UL = "+str(ulim_values[i])+" [erg/cm2/s]")
                self.log("\n")

        # Append filles columns to fits table    
        table.append(energy)
        table.append(energy_low)
        table.append(energy_high)
        table.append(flux)
        table.append(flux_err)
        table.append(TSvalues)
        table.append(ulim_values)
        
        # Create the FITS file now
        self.fits = gammalib.GFits()
        self.fits.append(table)
            
        # Return
        return
Exemple #41
0
        sim['irf'] = irf
        sim['outevents'] = 'events_nu_' + 's_' + irf + '_' + str(
            int(tobscta)) + 's_' + str(i + 1) + '.fits'
        sim['ra'] = ra
        sim['dec'] = dec
        sim['rad'] = 5.0
        sim['tmin'] = '2020-05-31T12:00:00'
        sim['tmax'] = '2020-05-31T12:10:00'
        sim['emin'] = emin
        sim['emax'] = emax
        sim['maxrate'] = 1.0e9
        sim['debug'] = debug
        sim['edisp'] = edisp
        sim.execute()

        c_bin = ctools.ctbin()
        c_bin['inobs'] = 'events_nu_' + 's_' + irf + '_' + str(
            int(tobscta)) + 's_' + str(i + 1) + '.fits'
        c_bin['xref'] = ra
        c_bin['yref'] = dec
        c_bin['proj'] = 'CAR'
        c_bin['coordsys'] = 'CEL'
        c_bin['binsz'] = binz
        c_bin['nxpix'] = x_pixs
        c_bin['nypix'] = y_pixs
        c_bin['ebinalg'] = 'LOG'
        c_bin['emin'] = emin
        c_bin['emax'] = emax
        c_bin['enumbins'] = n_bins
        c_bin['outcube'] = 'cube_' + str(i + 1) + '.fits'
        c_bin['debug'] = debug
def binned_pipeline(model_name, duration):
    """
    Binned analysis pipeline.
    """
    # Set script parameters
    caldb       = "prod2"
    irf         = "South_50h"
    ra          =   83.63
    dec         =   22.01
    rad_sim     =   10.0
    tstart      =    0.0
    tstop       = duration
    emin        =    0.1
    emax        =  100.0
    enumbins    =   40
    nxpix       =  200
    nypix       =  200
    binsz       =    0.02
    coordsys    = "CEL"
    proj        = "CAR"

    # Get start CPU time
    cpu_start = time.clock()

    # Simulate events
    sim = ctools.ctobssim()
    sim["inmodel"] = model_name
    sim["caldb"]   = caldb
    sim["irf"]     = irf
    sim["ra"]      = ra
    sim["dec"]     = dec
    sim["rad"]     = rad_sim
    sim["tmin"]    = tstart
    sim["tmax"]    = tstop
    sim["emin"]    = emin
    sim["emax"]    = emax
    sim.run()

    # Bin events into counts map
    bin = ctools.ctbin(sim.obs())
    bin["ebinalg"]  = "LOG"
    bin["emin"]     = emin
    bin["emax"]     = emax
    bin["enumbins"] = enumbins
    bin["nxpix"]    = nxpix
    bin["nypix"]    = nypix
    bin["binsz"]    = binsz
    bin["coordsys"] = coordsys
    bin["xref"]     = ra
    bin["yref"]     = dec
    bin["proj"]     = proj
    bin.run()

    # Get ctlike start CPU time
    cpu_ctlike = time.clock()

    # Perform maximum likelihood fitting
    like = ctools.ctlike(bin.obs())
    like.run()

    # Get stop CPU time and compute elapsed times
    cpu_stop    = time.clock()
    cpu_elapsed = cpu_stop - cpu_start
    cpu_ctlike  = cpu_stop - cpu_ctlike

    # Return
    return cpu_elapsed, cpu_ctlike
Exemple #43
0
        sim['outevents'] = 'events_nu_' + irf + '_' + str(
            int(tobscta)) + 's_' + str(i + 1) + '.fits'
        sim['ra'] = ra
        sim['dec'] = dec
        sim['rad'] = 5.0
        sim['tmin'] = '2020-05-31T12:00:00'
        sim['tmax'] = '2020-05-31T12:10:00'
        sim['emin'] = 0.02
        sim['emax'] = 199.0
        sim['maxrate'] = 1.0e9
        sim['seed'] = nuseed
        sim['debug'] = debug
        sim['edisp'] = edisp
        sim.execute()

        binning = ctools.ctbin()
        binning['inobs'] = 'events_nu_' + irf + '_' + str(
            int(tobscta)) + 's_' + str(i + 1) + '.fits'
        binning['xref'] = ra
        binning['yref'] = dec
        binning['coordsys'] = 'CEL'
        binning['proj'] = 'CAR'
        binning['binsz'] = 0.02
        binning['nxpix'] = 500
        binning['nypix'] = 500
        binning['ebinalg'] = 'LOG'
        binning['emin'] = 0.02
        binning['emax'] = 199.0
        binning['enumbins'] = 40
        binning['outcube'] = 'cntcube_nu_' + irf + '_' + str(
            int(tobscta)) + 's_' + str(i + 1) + '.fits'
def run_pipeline(obs, emin=0.1, emax=100.0, \
                 enumbins=20, nxpix=200, nypix=200, binsz=0.02, \
                 coordsys="CEL", proj="CAR", \
                 model="${CTOOLS}/share/models/crab.xml", \
                 caldb="prod2", irf="South_50h", \
                 debug=False):
    """
    Simulation and binned analysis pipeline.

    Keywords:
     emin     - Minimum energy of cube [TeV] (default: 0.1)
     emax     - Maximum energy of cube [TeV] (default: 100.0)
     enumbins - Number of energy bins in cube (default: 20)
     nxpix    - Number of RA pixels in cube (default: 200)
     nypix    - Number of DEC pixels in cube (default: 200)
     binsz    - Spatial cube bin size [deg] (default: 0.02)
     coordsys - Cube coordinate system (CEL or GAL)
     proj     - Cube World Coordinate System (WCS) projection
     model    - Model Xml file
     caldb    - Calibration database path (default: "dummy")
     irf      - Instrument response function (default: cta_dummy_irf)
     debug    - Enable debugging (default: False)
    """
    # Simulate events
    sim = ctools.ctobssim(obs)
    sim["debug"].boolean(debug)
    sim["outevents"].filename("obs.xml")
    sim.execute()

    # Bin events by looping over all observations in the container
    sim_obs = gammalib.GObservations("obs.xml")
    obs     = gammalib.GObservations()
    for run in sim_obs:

        # Get event filename and set counts cube filename
        eventfile = run.eventfile()
        cubefile  = "cube_"+eventfile

        # Bin events for that observation
        bin = ctools.ctbin()
        bin["inobs"].filename(eventfile)
        bin["outcube"].filename(cubefile)
        bin["ebinalg"].string("LOG")
        bin["emin"].real(emin)
        bin["emax"].real(emax)
        bin["enumbins"].integer(enumbins)
        bin["nxpix"].integer(nxpix)
        bin["nypix"].integer(nypix)
        bin["binsz"].real(binsz)
        bin["coordsys"].string(coordsys)
        bin["usepnt"].boolean(True)
        bin["proj"].string(proj)
        bin.execute()

        # Set observation ID
        bin.obs()[0].id(cubefile)
        bin.obs()[0].eventfile(cubefile)

        # Append result to observations
        obs.extend(bin.obs())

    # Save XML file
    xml = gammalib.GXml()
    obs.write(xml)
    xml.save("obs_cube.xml")

    # Perform maximum likelihood fitting
    like = ctools.ctlike()
    like["inobs"].filename("obs_cube.xml")
    like["inmodel"].filename(model)
    like["outmodel"].filename("fit_results.xml")
    like["expcube"].filename("NONE")
    like["psfcube"].filename("NONE")
    like["bkgcube"].filename("NONE")
    like["caldb"].string(caldb)
    like["irf"].string(irf)
    like["debug"].boolean(True) # Switch this always on for results in console
    like.execute()
	
    # Return
    return
def prepare(obsname, bkgname, rad=2.0, emin=0.3, emax=50.0, ebins=20):
    """
    Prepare events for analysis

    Parameters
    ----------
    obsname : str
        Observation definition XML file
    bkgname : str
        Background model definition XML file
    rad : float, optional
        Selection radius (degrees)
    emin : float, optional
        Minimum energy for analysis (TeV)
    emax : float, optional
        Maximum energy for analysis (TeV)
    ebins : int, optional
        Number of energy bins
    """
    # Set filenames
    cntcube = 'rx_stacked%2.2d_cntcube.fits' % ebins
    expcube = 'rx_stacked%2.2d_expcube.fits' % ebins
    psfcube = 'rx_stacked%2.2d_psfcube.fits' % ebins
    edispcube = 'rx_stacked%2.2d_edispcube.fits' % ebins
    bkgcube = 'rx_stacked%2.2d_bkgcube.fits' % ebins
    obsname_binned = add_attribute(obsname, '_binned%2.2d' % ebins)
    bkgname_stacked = add_attribute(bkgname, '_stacked')
    obsname_stacked = add_attribute(obsname, '_stacked%2.2d' % ebins)
    obsname_stacked_edisp = add_attribute(obsname_stacked, '_edisp')

    # Generate background lookup
    generate_background_lookup()

    # Continue only if selected events do not exist
    if not os.path.isfile(obsname):

        # Setup task parameters
        select = ctools.ctselect()
        select['inobs'] = '$HESSDATA/obs/obs_rx.xml'
        select['outobs'] = obsname
        select['ra'] = 'UNDEF'
        select['dec'] = 'UNDEF'
        select['rad'] = rad
        select['tmin'] = 'UNDEF'
        select['tmax'] = 'UNDEF'
        select['emin'] = emin
        select['emax'] = emax
        select['usethres'] = 'DEFAULT'
        select['logfile'] = 'rx_hess_select_events.log'
        select.logFileOpen()

        # Select events
        select.execute()

    # Continue only if background model does not exist
    if not os.path.isfile(bkgname):

        # Setup task parameters
        bkg = cscripts.csbkgmodel()
        bkg['inobs'] = '$HESSDATA/obs/obs_rx.xml'
        bkg['outmodel'] = bkgname
        bkg['instrument'] = 'HESS'
        bkg['spatial'] = 'LOOKUP'
        bkg['slufile'] = 'off_lookup.fits'
        bkg['gradient'] = True
        bkg['spectral'] = 'NODES'
        bkg['ebinalg'] = 'LOG'
        bkg['emin'] = emin
        bkg['emax'] = 30.0
        bkg['enumbins'] = 8
        bkg['runwise'] = True
        bkg['rad'] = rad
        bkg['logfile'] = 'rx_hess_create_background.log'
        bkg.logFileOpen()

        # Generate background model
        bkg.execute()

    # Continue only if counts cube does not exist
    if not os.path.isfile(cntcube):

        # Setup task parameters
        ctbin = ctools.ctbin()
        ctbin['inobs'] = obsname
        ctbin['outobs'] = cntcube
        ctbin['ebinalg'] = 'LOG'
        ctbin['emin'] = emin
        ctbin['emax'] = emax
        ctbin['enumbins'] = ebins
        ctbin['coordsys'] = 'CEL'
        ctbin['proj'] = 'TAN'
        ctbin['xref'] = 258.1125
        ctbin['yref'] = -39.6867
        ctbin['nxpix'] = 300
        ctbin['nypix'] = 300
        ctbin['binsz'] = 0.02
        ctbin['logfile'] = 'rx_hess_create_cntcube.log'
        ctbin.logFileOpen()

        # Generate counts cube
        ctbin.execute()

    # Continue only if counts cubes for binned analysis do not exist
    if not os.path.isfile(obsname_binned):

        # Setup task parameters
        ctbin = ctools.ctbin()
        ctbin['inobs'] = obsname
        ctbin['outobs'] = obsname_binned
        ctbin['stack'] = False
        ctbin['usepnt'] = True
        ctbin['ebinalg'] = 'LOG'
        ctbin['emin'] = emin
        ctbin['emax'] = emax
        ctbin['enumbins'] = ebins
        ctbin['coordsys'] = 'CEL'
        ctbin['proj'] = 'TAN'
        ctbin['nxpix'] = 200
        ctbin['nypix'] = 200
        ctbin['binsz'] = 0.02
        ctbin['logfile'] = 'rx_hess_create_cntcube_binned.log'
        ctbin.logFileOpen()

        # Generate counts cubes
        ctbin.execute()

    # Continue only if exposure cube does not exist
    if not os.path.isfile(expcube):

        # Setup task parameters
        ctexpcube = ctools.ctexpcube()
        ctexpcube['inobs'] = obsname
        ctexpcube['incube'] = 'NONE'
        ctexpcube['ebinalg'] = 'LOG'
        ctexpcube['emin'] = 0.1  # Full energy range
        ctexpcube['emax'] = 100.0  # Full energy range
        ctexpcube['enumbins'] = 300  # Factor ~3 oversampling of IRF
        ctexpcube['coordsys'] = 'CEL'
        ctexpcube['proj'] = 'TAN'
        ctexpcube['xref'] = 258.1125
        ctexpcube['yref'] = -39.6867
        ctexpcube['nxpix'] = 300
        ctexpcube['nypix'] = 300
        ctexpcube['binsz'] = 0.02
        ctexpcube['outcube'] = expcube
        ctexpcube['logfile'] = 'rx_hess_create_expcube.log'
        ctexpcube.logFileOpen()

        # Generate exposure cube
        ctexpcube.execute()

    # Continue only if PSF cube does not exist
    if not os.path.isfile(psfcube):

        # Setup task parameters
        ctpsfcube = ctools.ctpsfcube()
        ctpsfcube['inobs'] = obsname
        ctpsfcube['incube'] = 'NONE'
        ctpsfcube['ebinalg'] = 'LOG'
        ctpsfcube['emin'] = 0.1  # Full energy range
        ctpsfcube['emax'] = 100.0  # Full energy range
        ctpsfcube['enumbins'] = 300  # Factor ~3 oversampling of IRF
        ctpsfcube['coordsys'] = 'CEL'
        ctpsfcube['proj'] = 'TAN'
        ctpsfcube['xref'] = 258.1125
        ctpsfcube['yref'] = -39.6867
        ctpsfcube['nxpix'] = 30
        ctpsfcube['nypix'] = 30
        ctpsfcube['binsz'] = 0.2
        ctpsfcube['amax'] = 0.7  # Full H.E.S.S. PSF range
        ctpsfcube['anumbins'] = 300  # Factor ~2 oversampling of IRF
        ctpsfcube['outcube'] = psfcube
        ctpsfcube['logfile'] = 'rx_hess_create_psfcube.log'
        ctpsfcube.logFileOpen()

        # Generate PSF cube
        ctpsfcube.execute()

    # Continue only if energy dispersion cube does not exist
    if not os.path.isfile(edispcube):

        # Setup task parameters
        ctedispcube = ctools.ctedispcube()
        ctedispcube['inobs'] = obsname
        ctedispcube['incube'] = 'NONE'
        ctedispcube['ebinalg'] = 'LOG'
        ctedispcube['emin'] = 0.1  # Full energy range
        ctedispcube['emax'] = 100.0  # Full energy range
        ctedispcube['enumbins'] = 300  # Factor ~3 oversampling of IRF
        ctedispcube['coordsys'] = 'CEL'
        ctedispcube['proj'] = 'TAN'
        ctedispcube['xref'] = 258.1125
        ctedispcube['yref'] = -39.6867
        ctedispcube['nxpix'] = 30
        ctedispcube['nypix'] = 30
        ctedispcube['binsz'] = 0.2
        ctedispcube['migramax'] = 5.0
        ctedispcube['migrabins'] = 300
        ctedispcube['outcube'] = edispcube
        ctedispcube['logfile'] = 'rx_hess_create_edispcube.log'
        ctedispcube.logFileOpen()

        # Generate energy dispersion cube
        ctedispcube.execute()

    # Continue only if background cube does not exist
    if not os.path.isfile(bkgcube):

        # Setup task parameters
        ctbkgcube = ctools.ctbkgcube()
        ctbkgcube['inobs'] = obsname
        ctbkgcube['incube'] = cntcube
        ctbkgcube['inmodel'] = bkgname
        ctbkgcube['outcube'] = bkgcube
        ctbkgcube['outmodel'] = bkgname_stacked
        ctbkgcube['logfile'] = 'rx_hess_create_bkgcube.log'
        ctbkgcube.logFileOpen()

        # Generate background cube
        ctbkgcube.execute()

    # Continue only if stacked observation definition XML file does not
    # exist
    if not os.path.isfile(obsname_stacked):

        # Build stacked observation
        run = gammalib.GCTAObservation(cntcube, expcube, psfcube, bkgcube)
        run.name('RX J1713.7-3946')
        run.instrument('HESS')

        # Append to observation container
        obs = gammalib.GObservations()
        obs.append(run)

        # Save observation container
        obs.save(obsname_stacked)

    # Continue only if stacked observation definition XML file with energy
    # energy dispersion enabled does not exist
    if not os.path.isfile(obsname_stacked_edisp):

        # Build stacked observation
        run = gammalib.GCTAObservation(cntcube, expcube, psfcube, edispcube,
                                       bkgcube)
        run.name('RX J1713.7-3946')
        run.instrument('HESS')

        # Append to observation container
        obs = gammalib.GObservations()
        obs.append(run)

        # Save observation container
        obs.save(obsname_stacked_edisp)

    # Continue only if stacked model definition XML file does exist
    if os.path.isfile(bkgname_stacked):

        # Load model definition XML files
        joint = gammalib.GModels(bkgname)
        stacked = gammalib.GModels(bkgname_stacked)

        # Get spectral component of joint file and remplace it as spectral
        # component of stacked file
        spectrum = joint[0].spectral()
        for i in range(spectrum.nodes()):
            spectrum.intensity(i, 1.0)
        spectrum.autoscale()
        stacked[0].spectral(spectrum)

        # Save stacked model
        stacked.save(bkgname_stacked)

    # Return
    return
Exemple #46
0
def sim(obs,
        log=False,
        debug=False,
        chatter=2,
        edisp=False,
        seed=0,
        emin=None,
        emax=None,
        nbins=0,
        binsz=0.05,
        npix=200,
        proj='TAN',
        coord='GAL'):
    """
    Simulate events for all observations in the container

    Parameters
    ----------
    obs : `~gammalib.GObservations`
        Observation container without events
    log : bool, optional
        Create log file(s)
    debug : bool, optional
        Create console dump?
    chatter : int, optional
        Chatter level
    edisp : bool, optional
        Apply energy dispersion?
    seed : int, integer
        Seed value for simulations
    emin : float, optional
        Minimum energy of counts cube for binned (TeV)
    emax : float, optional
        Maximum energy of counts cube for binned (TeV)
    nbins : int, optional
        Number of energy bins (0=unbinned)
    binsz : float, optional
        Pixel size for binned simulation (deg/pixel)
    npix : int, optional
        Number of pixels in X and Y for binned simulation
    proj : str, optional
        Projection for binned simulation
    coord : str, optional
        Coordinate system for binned simulation

    Returns
    -------
    obs : `~gammalib.GObservations`
        Observation container filled with simulated events
    """

    # Allocate ctobssim application and set parameters
    sim = ctools.ctobssim(obs)
    sim['seed'] = seed
    sim['edisp'] = edisp
    sim['chatter'] = chatter
    sim['debug'] = debug

    # Optionally open the log file
    if log:
        sim.logFileOpen()

    # Run ctobssim application. This will loop over all observations in the
    # container and simulation the events for each observation. Note that
    # events are not added together, they still apply to each observation
    # separately.
    sim.run()

    # Binned option?
    if nbins > 0:

        # If energy boundaries are not given then determine common energy
        # boundaries for all observations
        if emin == None or emax == None:
            emin = None
            emax = None
            for run in sim.obs():
                run_emin = run.events().ebounds().emin().TeV()
                run_emax = run.events().ebounds().emax().TeV()
                if emin == None:
                    emin = run_emin
                elif run_emin > emin:
                    emin = run_emin
                if emax == None:
                    emax = run_emax
                elif run_emax > emax:
                    emax = run_emax

        # Allocate ctbin application and set parameters
        bin = ctools.ctbin(sim.obs())
        bin['ebinalg'] = 'LOG'
        bin['emin'] = emin
        bin['emax'] = emax
        bin['enumbins'] = nbins
        bin['usepnt'] = True  # Use pointing for map centre
        bin['nxpix'] = npix
        bin['nypix'] = npix
        bin['binsz'] = binsz
        bin['coordsys'] = coord
        bin['proj'] = proj
        bin['chatter'] = chatter
        bin['debug'] = debug

        # Optionally open the log file
        if log:
            bin.logFileOpen()

        # Run ctbin application. This will loop over all observations in
        # the container and bin the events in counts maps
        bin.run()

        # Make a deep copy of the observation that will be returned
        # (the ctbin object will go out of scope one the function is
        # left)
        obs = bin.obs().copy()

    else:

        # Make a deep copy of the observation that will be returned
        # (the ctobssim object will go out of scope one the function is
        # left)
        obs = sim.obs().copy()

    # Delete the simulation
    del sim

    # Return observation container
    return obs
Exemple #47
0
def stackedPipeline(
    name="Crab",
    obsfile="index.xml",
    l=0.01,
    b=0.01,
    emin=0.1,
    emax=100.0,
    enumbins=20,
    nxpix=200,
    nypix=200,
    binsz=0.02,
    coordsys="CEL",
    proj="CAR",
    caldb="prod2",
    irf="acdc1a",
    debug=False,
    inmodel="Crab",
    outmodel="results",
):
    """
    Simulation and stacked analysis pipeline
    
    Parameters
    ----------
    obs : `~gammalib.GObservations`
    Observation container
    ra : float, optional
    Right Ascension of counts cube centre (deg)
    dec : float, optional
    Declination of Region of counts cube centre (deg)
    emin : float, optional
    Minimum energy (TeV)
    emax : float, optional
    Maximum energy (TeV)
    enumbins : int, optional
    Number of energy bins
    nxpix : int, optional
    Number of pixels in X axis
    nypix : int, optional
    Number of pixels in Y axis
    binsz : float, optional
    Pixel size (deg)
    coordsys : str, optional
    Coordinate system
    proj : str, optional
    Coordinate projection
    debug : bool, optional
    Debug function
    """

    # Bin events into counts map
    bin = ctools.ctbin()
    bin["inobs"] = obsfile
    bin["ebinalg"] = "LOG"
    bin["emin"] = emin
    bin["emax"] = emax
    bin["enumbins"] = enumbins
    bin["nxpix"] = nxpix
    bin["nypix"] = nypix
    bin["binsz"] = binsz
    bin["coordsys"] = coordsys
    bin["proj"] = proj
    bin["xref"] = l
    bin["yref"] = b
    bin["debug"] = debug
    bin["outobs"] = "cntcube.fits"
    bin.execute()
    print("Datacube : done!")

    # Create exposure cube
    expcube = ctools.ctexpcube()
    # expcube['incube']=bin.obs()
    expcube["inobs"] = obsfile
    expcube["incube"] = "NONE"
    expcube["ebinalg"] = "LOG"
    expcube["caldb"] = caldb
    expcube["irf"] = irf
    expcube["emin"] = emin
    expcube["emax"] = emax
    expcube["enumbins"] = enumbins
    expcube["nxpix"] = nxpix
    expcube["nypix"] = nypix
    expcube["binsz"] = binsz
    expcube["coordsys"] = coordsys
    expcube["proj"] = proj
    expcube["xref"] = l
    expcube["yref"] = b
    expcube["debug"] = debug
    expcube["outcube"] = "cube_exp.fits"
    expcube.execute()
    print("Expcube : done!")

    # Create PSF cube
    psfcube = ctools.ctpsfcube()
    psfcube["inobs"] = obsfile
    psfcube["incube"] = "NONE"
    psfcube["ebinalg"] = "LOG"
    psfcube["caldb"] = caldb
    psfcube["irf"] = irf
    psfcube["emin"] = emin
    psfcube["emax"] = emax
    psfcube["enumbins"] = enumbins
    psfcube["nxpix"] = 10
    psfcube["nypix"] = 10
    psfcube["binsz"] = 1.0
    psfcube["coordsys"] = coordsys
    psfcube["proj"] = proj
    psfcube["xref"] = l
    psfcube["yref"] = b
    psfcube["debug"] = debug
    psfcube["outcube"] = "psf_cube.fits"
    psfcube.execute()
    print("Psfcube : done!")

    edispcube = ctools.ctedispcube()
    edispcube["inobs"] = obsfile
    edispcube["ebinalg"] = "LOG"
    edispcube["incube"] = "NONE"
    edispcube["caldb"] = caldb
    edispcube["irf"] = irf
    edispcube["xref"] = l
    edispcube["yref"] = b
    edispcube["proj"] = proj
    edispcube["coordsys"] = coordsys
    edispcube["binsz"] = 1.0
    edispcube["nxpix"] = 10
    edispcube["nypix"] = 10
    edispcube["emin"] = emin
    edispcube["emax"] = emax
    edispcube["enumbins"] = enumbins
    edispcube["outcube"] = "edisp_cube.fits"
    edispcube["debug"] = debug
    edispcube.execute()
    print("Edispcube : done!")

    # Create background cube
    bkgcube = ctools.ctbkgcube()
    bkgcube["inobs"] = obsfile
    bkgcube["incube"] = "cntcube.fits"
    bkgcube["caldb"] = caldb
    bkgcube["irf"] = irf
    bkgcube["debug"] = debug
    bkgcube["inmodel"] = str(inmodel)
    bkgcube["outcube"] = "bkg_cube.fits"
    bkgcube["outmodel"] = "bkg_cube.xml"
    bkgcube.execute()
    print("Bkgcube : done!")

    # Fix the instrumental background parameters
    bkgcube.models()["BackgroundModel"]["Prefactor"].fix()
    bkgcube.models()["BackgroundModel"]["Index"].fix()
    #
    #    # Attach background model to observation container
    bin.obs().models(bkgcube.models())
    #
    #
    #    # Set Exposure and Psf cube for first CTA observation
    #    # (ctbin will create an observation with a single container)
    bin.obs()[0].response(expcube.expcube(), psfcube.psfcube(),
                          edispcube.edispcube(), bkgcube.bkgcube())

    # Perform maximum likelihood fitting
    like = ctools.ctlike(bin.obs())
    #    like['inmodel']='bkg_cube.xml'
    like["edisp"] = True
    #    like['edispcube'] = 'edisp_cube.fits'
    #    like['expcube'] = 'cube_exp.fits'
    #    like['psfcube'] = 'psf_cube.fits'
    #    like['bkgcube'] = 'bkg_cube.fits'
    like["outmodel"] = str(outmodel)
    #    like['outcovmat']=inmodel+'_covmat.txt'
    like["debug"] = debug  # Switch this always on for results in console
    # like['statistic']='CSTAT'
    like.execute()
    print("Likelihood : done!")

    # Set the best-fit models (from ctlike) for the counts cube
    bin.obs().models(like.obs().models())

    # Obtain the best-fit butterfly
    try:
        butterfly = ctools.ctbutterfly(bin.obs())
        butterfly["srcname"] = name
        butterfly["inmodel"] = str(outmodel)
        butterfly["edisp"] = True
        butterfly["emin"] = emin
        butterfly["emax"] = emax
        butterfly["outfile"] = str(outmodel.parent) + "/" + str(
            outmodel.stem) + ".txt"
        butterfly[
            "debug"] = debug  # Switch this always on for results in console
        # like['statistic']='CSTAT'
        butterfly.execute()
        print("Butterfly : done!")
    except:
        print("I COULDN'T CALCULATE THE BUTTERFLY....")

    # Extract the spectrum
    try:
        csspec = cscripts.csspec(bin.obs())
        csspec["srcname"] = name
        csspec["inmodel"] = str(outmodel)
        csspec["method"] = "AUTO"
        csspec["ebinalg"] = "LOG"
        csspec["emin"] = emin
        csspec["emax"] = emax
        csspec["enumbins"] = 10
        csspec["edisp"] = True
        csspec["outfile"] = str(outmodel.parent) + "/" + str(
            outmodel.stem) + ".fits"
        csspec["debug"] = debug  # Switch this always on for results in console
        csspec.execute()
        print("Csspec : done!")
    except:
        print("I COULDN'T CALCULATE THE SPECTRUM....")

    # Return
    return
Exemple #48
0
    def _test_python(self):
        """
        Test ctbin from Python
        """
        # Allocate ctbin
        binning = ctools.ctbin()

        # Check that empty ctbin has an empty observation container and counts
        # cube
        self.test_value(binning.obs().size(), 0,
             'Check that empty ctbin has an empty observation container')
        self.test_value(binning.cube().size(), 0,
             'Check that empty ctbin has an empty counts cube')

        # Check that saving does not nothing
        binning['logfile'] = 'ctbin_py0.log'
        binning['outcube'] = 'ctbin_py0.fits'
        binning.logFileOpen()
        binning.save()
        self.test_assert(not os.path.isfile('ctbin_py0.fits'),
             'Check that no counts cube has been created')

        # Check that publishing does not lead to an exception or segfault
        binning.publish()

        # Check that clearing does not lead to an exception or segfault
        binning.clear()

        # Now set ctbin parameters
        binning['inobs']    = self._events
        binning['outcube']  = 'ctbin_py1.fits'
        binning['ebinalg']  = 'LOG'
        binning['emin']     = 0.1
        binning['emax']     = 100.0
        binning['enumbins'] = 10
        binning['nxpix']    = 40
        binning['nypix']    = 40
        binning['binsz']    = 0.1
        binning['coordsys'] = 'CEL'
        binning['proj']     = 'CAR'
        binning['xref']     = 83.63
        binning['yref']     = 22.01
        binning['logfile']  = 'ctbin_py1.log'
        binning['chatter']  = 2

        # Run ctbin tool
        binning.logFileOpen()
        binning.run()

        # Check content of observation container and counts cube
        self._check_observation(binning, 3105)
        self._check_cube(binning.cube(), 3105)

        # Copy ctbin tool
        cpy_bin = binning.copy()

        # Check content of observation container and counts cube
        self._check_observation(cpy_bin, 3105)
        self._check_cube(cpy_bin.cube(), 3105)

        # Run copy of ctbin tool again
        cpy_bin['logfile'] = 'ctbin_py2.log'
        cpy_bin['chatter'] = 3
        cpy_bin.logFileOpen()
        cpy_bin.run()

        # Check content of observation container and counts cube. Now an empty
        # event cube is expected since on input the observation is binned, and
        # any binned observation will be skipped.
        self._check_observation(cpy_bin, 0)
        self._check_cube(cpy_bin.cube(), 0)

        # Save counts cube
        binning.save()

        # Load counts cube and check content
        evt = gammalib.GCTAEventCube('ctbin_py1.fits')
        self._check_cube(evt, 3105)

        # Now clear ctbin tool
        binning.clear()

        # Check that cleared ctbin has an empty observation container and
        # counts cube
        self.test_value(binning.obs().size(), 0,
             'Check that empty ctbin has an empty observation container')
        self.test_value(binning.cube().size(), 0,
             'Check that empty ctbin has an empty counts cube')

        # Prepare observation container for stacking of events into a
        # single counts cube
        obs = self._obs_events()

        # Set-up ctbin using an observation container
        binning = ctools.ctbin(obs)
        binning['outcube']  = 'ctbin_py3.fits'
        binning['ebinalg']  = 'LOG'
        binning['emin']     = 0.1
        binning['emax']     = 100.0
        binning['enumbins'] = 10
        binning['nxpix']    = 40
        binning['nypix']    = 40
        binning['binsz']    = 0.1
        binning['coordsys'] = 'CEL'
        binning['proj']     = 'CAR'
        binning['xref']     = 83.63
        binning['yref']     = 22.01
        binning['publish']  = True
        binning['logfile']  = 'ctbin_py3.log'
        binning['chatter']  = 3

        # Execute ctbin tool
        binning.logFileOpen()
        binning.execute()

        # Check content of observation and cube (need multiplier=3 since
        # three identical observations have been appended)
        self._check_observation(binning, 3105, multiplier=3)
        self._check_cube(binning.cube(), 3105, multiplier=3)

        # Load counts cube and check content.
        evt = gammalib.GCTAEventCube('ctbin_py3.fits')
        self._check_cube(evt, 3105, multiplier=3)

        # And finally go for a fully Pythonic version with all parameters
        # being specified in a dictionary
        pars = {'inobs': self._events, 'ebinalg': 'LIN', 'emin': 0.1,
                'emax': 100.0, 'enumbins': 10, 'nxpix': 40, 'nypix': 40,
                'binsz': 0.1, 'coordsys': 'CEL', 'proj': 'CAR',
                'xref': 83.63, 'yref': 22.01, 'outcube': 'ctbin_py4.fits',
                'logfile': 'ctbin_py4.log', 'chatter': 2}
        binning = ctools.ctbin()
        binning.pardict(pars)
        binning.logFileOpen()
        binning.execute()

        # Load counts cube and check content
        evt = gammalib.GCTAEventCube('ctbin_py4.fits')
        self._check_cube(evt, 3105)

        # Return
        return
Exemple #49
0
def run_pipeline(obs, emin=0.1, emax=100.0,
                 enumbins=20, nxpix=200, nypix=200, binsz=0.02,
                 coordsys='CEL', proj='CAR',
                 model='data/crab.xml',
                 caldb='prod2', irf='South_0.5h',
                 debug=False):
    """
    Simulation and binned analysis pipeline

    Parameters
    ----------
    obs : `~gammalib.GObservations`
        Observation container
    emin : float, optional
        Minimum energy (TeV)
    emax : float, optional
        Maximum energy (TeV)
    enumbins : int, optional
        Number of energy bins
    nxpix : int, optional
        Number of pixels in X axis
    nypix : int, optional
        Number of pixels in Y axis
    binsz : float, optional
        Pixel size (deg)
    coordsys : str, optional
        Coordinate system
    proj : str, optional
        Coordinate projection
    model : str, optional
        Model definition XML file
    caldb : str, optional
        Calibration database path
    irf : str, optional
        Instrument response function
    debug : bool, optional
        Debug function
    """
    # Simulate events
    sim = ctools.ctobssim(obs)
    sim['debug']     = debug
    sim['outevents'] = 'obs.xml'
    sim.execute()

    # Bin events by looping over all observations in the container
    sim_obs = gammalib.GObservations('obs.xml')
    obs     = gammalib.GObservations()
    for run in sim_obs:

        # Get event filename and set counts cube filename
        eventfile = run.eventfile().url()
        cubefile  = 'cube_'+eventfile

        # Bin events for that observation
        bin = ctools.ctbin()
        bin['inobs']    = eventfile
        bin['outcube']  = cubefile
        bin['ebinalg']  = 'LOG'
        bin['emin']     = emin
        bin['emax']     = emax
        bin['enumbins'] = enumbins
        bin['nxpix']    = nxpix
        bin['nypix']    = nypix
        bin['binsz']    = binsz
        bin['coordsys'] = coordsys
        bin['usepnt']   = True
        bin['proj']     = proj
        bin.execute()

        # Set observation ID
        bin.obs()[0].id(cubefile)
        bin.obs()[0].eventfile(cubefile)

        # Append result to observations
        obs.extend(bin.obs())

    # Save XML file
    xml = gammalib.GXml()
    obs.write(xml)
    xml.save('obs_cube.xml')

    # Perform maximum likelihood fitting
    like = ctools.ctlike()
    like['inobs']    = 'obs_cube.xml'
    like['inmodel']  = model
    like['outmodel'] = 'fit_results.xml'
    like['expcube']  = 'NONE'
    like['psfcube']  = 'NONE'
    like['bkgcube']  = 'NONE'
    like['caldb']    = caldb
    like['irf']      = irf
    like['debug']    = True # Switch this always on for results in console
    like.execute()

    # Return
    return
Exemple #50
0
def run_pipeline(obs, ra=83.63, dec=22.01, emin=0.1, emax=100.0,
                 enumbins=20, nxpix=200, nypix=200, binsz=0.02,
                 coordsys="CEL", proj="CAR", debug=False):
    """
    Simulation and stacked analysis pipeline.

    Keywords:
     ra       - RA of cube centre [deg] (default: 83.6331)
     dec      - DEC of cube centre [deg] (default: 22.0145)
     emin     - Minimum energy of cube [TeV] (default: 0.1)
     emax     - Maximum energy of cube [TeV] (default: 100.0)
     enumbins - Number of energy bins in cube (default: 20)
     nxpix    - Number of RA pixels in cube (default: 200)
     nypix    - Number of DEC pixels in cube (default: 200)
     binsz    - Spatial cube bin size [deg] (default: 0.02)
     coordsys - Cube coordinate system (CEL or GAL)
     proj     - Cube World Coordinate System (WCS) projection
     debug    - Enable debugging (default: False)
    """
    # Simulate events
    sim = ctools.ctobssim(obs)
    sim["debug"] = debug
    sim.run()

    # Bin events into counts map
    bin = ctools.ctbin(sim.obs())
    bin["ebinalg"]  = "LOG"
    bin["emin"]     = emin
    bin["emax"]     = emax
    bin["enumbins"] = enumbins
    bin["nxpix"]    = nxpix
    bin["nypix"]    = nypix
    bin["binsz"]    = binsz
    bin["coordsys"] = coordsys
    bin["proj"]     = proj
    bin["xref"]     = ra
    bin["yref"]     = dec
    bin["debug"]    = debug
    bin.run()

    # Create exposure cube
    expcube = ctools.ctexpcube(sim.obs())
    expcube["incube"]   = "NONE"
    expcube["ebinalg"]  = "LOG"
    expcube["emin"]     = emin
    expcube["emax"]     = emax
    expcube["enumbins"] = enumbins
    expcube["nxpix"]    = nxpix
    expcube["nypix"]    = nypix
    expcube["binsz"]    = binsz
    expcube["coordsys"] = coordsys
    expcube["proj"]     = proj
    expcube["xref"]     = ra
    expcube["yref"]     = dec
    expcube["debug"]    = debug
    expcube.run()

    # Create PSF cube
    psfcube = ctools.ctpsfcube(sim.obs())
    psfcube["incube"]   = "NONE"
    psfcube["ebinalg"]  = "LOG"
    psfcube["emin"]     = emin
    psfcube["emax"]     = emax
    psfcube["enumbins"] = enumbins
    psfcube["nxpix"]    = 10
    psfcube["nypix"]    = 10
    psfcube["binsz"]    = 1.0
    psfcube["coordsys"] = coordsys
    psfcube["proj"]     = proj
    psfcube["xref"]     = ra
    psfcube["yref"]     = dec
    psfcube["debug"]    = debug
    psfcube.run()

    # Create background cube
    bkgcube = ctools.ctbkgcube(sim.obs())
    bkgcube["incube"]   = "NONE"
    bkgcube["ebinalg"]  = "LOG"
    bkgcube["emin"]     = emin
    bkgcube["emax"]     = emax
    bkgcube["enumbins"] = enumbins
    bkgcube["nxpix"]    = 10
    bkgcube["nypix"]    = 10
    bkgcube["binsz"]    = 1.0
    bkgcube["coordsys"] = coordsys
    bkgcube["proj"]     = proj
    bkgcube["xref"]     = ra
    bkgcube["yref"]     = dec
    bkgcube["debug"]    = debug
    bkgcube.run()

    # Attach background model to observation container
    bin.obs().models(bkgcube.models())

    # Set Exposure and Psf cube for first CTA observation
    # (ctbin will create an observation with a single container)
    bin.obs()[0].response(expcube.expcube(), psfcube.psfcube(), bkgcube.bkgcube())

    # Perform maximum likelihood fitting
    like = ctools.ctlike(bin.obs())
    like["debug"] = True # Switch this always on for results in console
    like.run()

    # Return
    return
Exemple #51
0
    def run(self):
        """
        Run the script
        """
        # Switch screen logging on in debug mode
        if self._logDebug():
            self._log.cout(True)

        # Get parameters
        self._get_parameters()

        # Write observation into logger
        self._log_observations(gammalib.NORMAL, self.obs(), 'Observation')

        # If a counts and model cube are specified then load them as sky map
        if self._use_maps:
            countmap = gammalib.GSkyMap(self['inobs'].filename())
            modelmap = gammalib.GSkyMap(self['modcube'].filename())

        # ... otherwise build a counts cube and model cube
        else:

            # Do not build counts cube if we have already one in the observation
            # container
            if self._skip_binning:
                cta_counts_cube = gammalib.GCTAEventCube(self.obs()[0].events())

            # ... otherwise generate one now from the event list
            else:

                # Write header
                self._log_header1(gammalib.TERSE, 'Generate binned map (ctbin)')

                # Create countsmap
                binning = ctools.ctbin(self.obs())
                binning['xref']     = self['xref'].real()
                binning['yref']     = self['yref'].real()
                binning['proj']     = self['proj'].string()
                binning['coordsys'] = self['coordsys'].string()
                binning['ebinalg']  = self['ebinalg'].string()
                binning['nxpix']    = self['nxpix'].integer()
                binning['nypix']    = self['nypix'].integer()
                binning['binsz']    = self['binsz'].real()
                if self['ebinalg'].string() == 'FILE':
                    binning['ebinfile'] = self['ebinfile'].filename().file()
                else:
                    binning['enumbins'] = self['enumbins'].integer()
                    binning['emin']     = self['emin'].real()
                    binning['emax']     = self['emax'].real()
                binning['chatter']  = self['chatter'].integer()
                binning['clobber']  = self['clobber'].boolean()
                binning['debug']    = self['debug'].boolean()
                binning.run()

                # Retrieve counts cube
                cta_counts_cube = binning.cube()

            # Assign GCTAEventCube to skymap
            countmap = cta_counts_cube.counts()

            # Write header
            self._log_header1(gammalib.TERSE, 'Generate model map (ctmodel)')

            # Create model map
            model = ctools.ctmodel(self.obs())
            model.cube(cta_counts_cube)
            model['chatter'] = self['chatter'].integer()
            model['clobber'] = self['clobber'].boolean()
            model['debug']   = self['debug'].boolean()
            model['edisp']   = self['edisp'].boolean()
            model.run()

            # Get model map into GSkyMap object
            modelmap = model.cube().counts().copy()

        # Calculate residual maps
        # Note that we need a special
        # construct here to avoid memory leaks. This seems to be a SWIG feature
        # as SWIG creates a new object when calling binning.cube()
        countmap1 = countmap.copy()
        countmap1.stack_maps()
        modelmap.stack_maps()
        self._resmap = obsutils.residuals(self,countmap1,modelmap)

        # Optionally publish map
        if self['publish'].boolean():
            self.publish()

        # Return
        return
Exemple #52
0
    def _bin_evlist(self, obs):
        """
        Turn single event list into counts cube

        Parameters
        ----------
        obs : `~gammalib.GObservations`
            Observation container with single event list

        Returns
        -------
        obs, info : `~gammalib.GObservations`, dict
            Binned observation container and dictionary with event list ROI
            and energy range information
        """
        # Retrieve information about ROI in event list
        roi = obs[0].roi()
        ra = roi.centre().dir().ra_deg()
        dec = roi.centre().dir().dec_deg()
        rad = roi.radius()

        # We will cover the whole ROI with 0.02 deg binning
        npix = int(2.0 * rad / 0.02) + 1

        # Log binning of events
        self._log_string(gammalib.EXPLICIT, 'Binning events')

        # Bin events
        cntcube = ctools.ctbin(obs)
        cntcube['xref'] = ra
        cntcube['yref'] = dec
        cntcube['binsz'] = 0.02
        cntcube['nxpix'] = npix
        cntcube['nypix'] = npix
        cntcube['proj'] = 'TAN'
        cntcube['coordsys'] = 'CEL'
        cntcube['ebinalg'] = self['ebinalg'].string()
        if self['ebinalg'].string() == 'FILE':
            cntcube['ebinfile'] = self['ebinfile'].filename()
        else:
            cntcube['enumbins'] = self['enumbins'].integer()
            cntcube['emin'] = self['emin'].real()
            cntcube['emax'] = self['emax'].real()
        cntcube.run()

        # Retrieve the binned observation container
        binned_obs = cntcube.obs().copy()

        # Check if energy boundaries provided by user extend beyond the
        # content of the event list
        if self['emin'].real() > obs[0].events().emin().TeV():
            emin = 'INDEF'
        else:
            emin = obs[0].events().emin().TeV()
        if self['emax'].real() < obs[0].events().emax().TeV():
            emax = 'INDEF'
        else:
            emax = obs[0].events().emax().TeV()

        # Log energy range
        self._log_value(gammalib.EXPLICIT, 'Minimum energy (TeV)', emin)
        self._log_value(gammalib.EXPLICIT, 'Maximum energy (TeV)', emax)

        # Put ROI and E bound info in dictionary
        info = {
            'was_list': True,
            'roi_ra': ra,
            'roi_dec': dec,
            'roi_rad': rad,
            'emin': emin,
            'emax': emax
        }

        # Return new oberservation container
        return binned_obs, info