Exemple #1
0
 def _init_solutions(self, label, load_from, interpolate, save_to, exportables):
     """
     Internal helper implementation for init_solutions(): this initializes a pair of solution databases.
     
     Args:
         label (str): 
             the Jones matrix label
         load_from (str):
             filename of solution DB to load from. Can be empty or None.
         interpolate (bool):
             True if solutions are allowed to be interpolated.
         save_to (str):
             filename of solution DB to save to. Can be empty or None.
         exportables (dict):
             Dictionary of {key: (empty_value, axis_list)} describing the solutions that will be saved.
             As returned by exportable_solutions() of the gain machine.
         
     """
     # init solutions from database
     if load_from:
         print>>log(0, "blue"), "{} solutions will be initialized from {}".format(label, load_from)
         if "//" in load_from:
             filename, prefix = load_from.rsplit("//", 1)
         else:
             filename, prefix = load_from, label
         self._init_sols[label] = param_db.load(filename), prefix, interpolate
     # create database to save to
     if save_to:
         # define parameters in DB
         for sol_label, (empty_value, axes) in exportables.iteritems():
             self.define_param(save_to, "{}:{}".format(label, sol_label), empty_value, axes)
         print>> log(0), "{} solutions will be saved to {}".format(label, save_to)
Exemple #2
0
def extract_from_db(dbfile, name="G:gain"):
	"""Extract from dbfile"""

	LOGGER.debug("Loading gains database {}".format(dbfile))

	try:
		dbdata = db.load(dbfile)
		gains = dbdata[name]

		gainscube = gains.get_cube()
		data = gainscube.data[-1] # remove n_dir
	except Exception as e:
		# print(e)
		data = np.load(dbfile)
		data = data[-1] #,0] # assuming ntchunks is 1, remove n_dir

	return data
Exemple #3
0
 def __init__(self, gmfactory, ifrgain_opts, compute=True):
     """
     Initializes the IFR-based gains machinery.
     
     Args:
         gmfactory:      a GainMachine Factory is used to manage the solution databases
         ifrgain_opts:   dict of options
         compute:        if False, gains are not computed even if options ask them to
     """
     from cubical.main import expand_templated_name
     self.gmfactory = gmfactory
     load_from = expand_templated_name(ifrgain_opts['load-from'])
     save_to = expand_templated_name(ifrgain_opts['save-to'])
     self._ifrgains_per_chan = ifrgain_opts['per-chan']
     self._ifrgain = None
     self._nfreq = gmfactory.grid["freq"]
     nfreq, nant, ncorr = [
         len(gmfactory.grid[axis]) for axis in ("freq", "ant", "corr")
     ]
     if load_from:
         filename = load_from
         print(ModColor.Str(
             "applying baseline-based corrections (BBCs) from {}".format(
                 filename),
             col="green"),
               file=log(0))
         if "//" in filename:
             filename, prefix = filename.rsplit("//", 1)
         else:
             filename, prefix = filename, "BBC"
         parm = param_db.load(filename).get(prefix)
         if parm is None:
             print(ModColor.Str("  no solutions for '{}' in {}".format(
                 prefix, filename)),
                   file=log(0))
         else:
             self._ifrgain = parm.reinterpolate(
                 freq=gmfactory.grid["freq"]).filled()
             if tuple(self._ifrgain.shape) != (nfreq, nant, nant, ncorr,
                                               ncorr):
                 print(ModColor.Str(
                     "  invalid BBC shape {}, will ignore".format(
                         self._ifrgain.shape)),
                       file=log(0))
                 self._ifrgain = None
             else:
                 print("  loaded per-channel BBCs of shape {}".format(
                     filename, self._ifrgain.shape),
                       file=log(0))
                 if not self._ifrgains_per_chan:
                     print("  using one mean value across band",
                           file=log(0))
                     self._ifrgain[np.newaxis,
                                   ...] = self._ifrgain.mean(axis=0)
                 # reset off-diagonal values, if needed
                 if ifrgain_opts["apply-2x2"]:
                     print(ModColor.Str(
                         "  using full 2x2 BBCs. You'd better know what you're doing!",
                         col="green"),
                           file=log(0))
                 else:
                     self._ifrgain[..., (0, 1), (1, 0)] = 1
                     print("  using parallel-hand BBCs only", file=log(0))
     if save_to and compute:
         self._compute_2x2 = ifrgain_opts["compute-2x2"]
         # setup axes for IFR-based gains
         axes = ["freq", "ant1", "ant2", "corr1", "corr2"]
         # define the ifrgain parameter
         self._save_filename = save_to
         parm = gmfactory.define_param(self._save_filename,
                                       "BBC",
                                       1 + 0j,
                                       axes,
                                       interpolation_axes=["freq"])
         self._ifrgains_grid = {
             axis: parm.grid[i]
             for i, axis in enumerate(axes)
         }
         # initialize accumulators for M.D^H and D.D^H terms
         self._mdh_sum = np.ma.zeros(parm.shape,
                                     gmfactory.ctype,
                                     fill_value=0)
         self._ddh_sum = np.ma.zeros(parm.shape,
                                     gmfactory.ctype,
                                     fill_value=0)
         #
         print(
             "will compute & save suggested baseline-based corrections (BBCs) to {}"
             .format(self._save_filename),
             file=log(0))
         print(
             "  (these can optionally be applied in a subsequent CubiCal run)",
             file=log(0))
     else:
         self._ifrgains_grid = None
Exemple #4
0
 def reload(self):
     """Reloads saved IFR gain solutions from database"""
     return param_db.load(self._save_filename)["BBC"].get_cube()