Exemple #1
0
def get_uv_curve(list_curve_or):
    import math
    import numpy as np
    klen={}
    for curve in list_curve_or:
      vertex_list = cubit.get_relatives("curve", curve, "vertex")
      coord0=cubit.get_center_point('vertex', vertex_list[0])
      coord1=cubit.get_center_point('vertex', vertex_list[1])
      klen[curve]=np.array(coord1)-np.array(coord0)
    #
    l0=list_curve_or[0]
    c0=klen[l0]
    angles={}
    angles[l0]=0
    for curve in list_curve_or[1:]:
      c1=klen[curve]
      angletmp=np.dot(c0,c1)/(np.dot(c0,c0)**.5*np.dot(c1,c1)**.5)
      if -1 < angletmp < 1:
        angle=math.sin(np.arccos(angletmp))
      else:
        angle=0.        
      angles[curve]=angle
    a=angles.values()
    diff=max(a)-min(a)
    ucurve=[]
    vcurve=[]
    for curve in list_curve_or:
      if -diff < angles[curve] < diff:
        ucurve.append(curve)
      else:
        vcurve.append(curve)
    #
    return ucurve,vcurve
Exemple #2
0
def ordering_surfaces(list_surfaces):
    list_z=[]
    for s in list_surfaces:
        _,_,z=cubit.get_center_point("surface",s)
        list_z.append(z)
    ord_list_surfaces=[s for s,z in sorted(zip(list_surfaces,list_z),key=lambda x: (x[1]))]
    return ord_list_surfaces
Exemple #3
0
def ordering_surfaces(list_surfaces):
    list_z=[]
    for s in list_surfaces:
        _,_,z=cubit.get_center_point("surface",s)
        list_z.append(z)
    ord_list_surfaces=[s for s,z in sorted(zip(list_surfaces,list_z),key=lambda x: (x[1]))]
    return ord_list_surfaces
Exemple #4
0
def select_bottom_curve(lc):
    z = []
    for l in lc:
        center_point = cubit.get_center_point("curve", l)
        z.append(center_point[2])
    result = zip(z, lc)
    result.sort()
    return result[0][1]
def select_bottom_curve(lc):
    z=[]
    for l in lc:
        center_point = cubit.get_center_point("curve", l)
        z.append(center_point[2])
    result=zip(z,lc)
    result.sort()
    return result[0][1]
def select_bottom_curve(lc):
    z=[]
    for l in lc:
        center_point = cubit.get_center_point("curve", l)
        z.append(center_point[2])
    result=zip(z,lc)
    # takes line number from first entry
    curve=0
    if len(result) > 0:
        result.sort()
        curve=result[0][1]
    return curve
Exemple #7
0
def define_4side_lateral_surfaces(tres=0.0003, tol=0.000001):
    list_vol = cubit.parse_cubit_list("volume", "all")
    surf_xmin = []
    surf_ymin = []
    surf_xmax = []
    surf_ymax = []

    # min/max of bounding box
    xmin_box = cubit.get_total_bounding_box("volume", list_vol)[0]
    xmax_box = cubit.get_total_bounding_box("volume", list_vol)[1]
    ymin_box = cubit.get_total_bounding_box("volume", list_vol)[3]
    ymax_box = cubit.get_total_bounding_box("volume", list_vol)[4]
    zmin_box = cubit.get_total_bounding_box("volume", list_vol)[6]
    zmax_box = cubit.get_total_bounding_box("volume", list_vol)[7]
    #print('absorbing boundary xmin:' + str(xmin_box) + ' xmax: ' + str(xmax_box))
    #print('absorbing boundary ymin:' + str(ymin_box) + ' ymax: ' + str(ymax_box))
    #print('absorbing boundary zmin:' + str(zmin_box) + ' zmax: ' + str(zmax_box))

    for id_vol in list_vol:
        surf_vertical = []
        xsurf = []
        ysurf = []
        lsurf = cubit.get_relatives("volume", id_vol, "surface")
        for k in lsurf:
            normal = cubit.get_surface_normal(k)
            # checks if normal is horizontal (almost 0, i.e., +/- tres)
            if normal[2] >= -1 * tres and normal[2] <= tres:
                # checks if surface is on minimum/maximum side of the whole model
                center_point = cubit.get_center_point("surface", k)
                # note: for models with smaller volumes inscribed, we want only the outermost surfaces
                #       as absorbing ones
                #sbox = cubit.get_bounding_box('surface', k)
                # xmin of surface box relative to total box xmin
                if (abs(center_point[0] - xmin_box) / abs(xmax_box - xmin_box) <= tol) or \
                   (abs(center_point[0] - xmax_box) / abs(xmax_box - xmin_box) <= tol) or \
                   (abs(center_point[1] - ymin_box) / abs(ymax_box - ymin_box) <= tol) or \
                   (abs(center_point[1] - ymax_box) / abs(ymax_box - ymin_box) <= tol):
                    # adds as vertical surface
                    surf_vertical.append(k)
                    xsurf.append(center_point[0])
                    ysurf.append(center_point[1])
        # adds surfaces when on boundary
        if len(surf_vertical) > 0:
            surf_xmin.append(surf_vertical[xsurf.index(min(xsurf))])
            surf_ymin.append(surf_vertical[ysurf.index(min(ysurf))])
            surf_xmax.append(surf_vertical[xsurf.index(max(xsurf))])
            surf_ymax.append(surf_vertical[ysurf.index(max(ysurf))])
    #debug
    #print('define_4side_lateral_surfaces: xmin ',surf_xmin)
    #print('define_4side_lateral_surfaces: xmax ',surf_xmax)
    #print('define_4side_lateral_surfaces: ymin ',surf_ymin)
    #print('define_4side_lateral_surfaces: ymax ',surf_ymax)
    return surf_xmin, surf_ymin, surf_xmax, surf_ymax
Exemple #8
0
def select_bottom_curve(lc):
    z = []
    for l in lc:
        center_point = cubit.get_center_point("curve", l)
        z.append(center_point[2])
    result = zip(z, lc)
    # takes line number from first entry
    curve = 0
    if len(result) > 0:
        result.sort()
        curve = result[0][1]
    return curve
def define_4side_lateral_surfaces():
    list_vol=cubit.parse_cubit_list("volume","all")
    surf_xmin=[]
    surf_ymin=[]
    surf_xmax=[]
    surf_ymax=[]
    for id_vol in list_vol:
        surf_vertical=[]
        xsurf=[]
        ysurf=[]
        tres=0.3
        lsurf=cubit.get_relatives("volume",id_vol,"surface")
        for k in lsurf:
            normal=cubit.get_surface_normal(k)
            center_point = cubit.get_center_point("surface", k)
            if normal[2] >= -1*tres and normal[2] <= tres:
                surf_vertical.append(k)
                xsurf.append(center_point[0])
                ysurf.append(center_point[1])
        surf_xmin.append(surf_vertical[xsurf.index(min(xsurf))])
        surf_ymin.append(surf_vertical[ysurf.index(min(ysurf))])
        surf_xmax.append(surf_vertical[xsurf.index(max(xsurf))])
        surf_ymax.append(surf_vertical[ysurf.index(max(ysurf))])
    return surf_xmin,surf_ymin,surf_xmax,surf_ymax
Exemple #10
0
def define_4side_lateral_surfaces():
    list_vol = cubit.parse_cubit_list("volume", "all")
    surf_xmin = []
    surf_ymin = []
    surf_xmax = []
    surf_ymax = []
    for id_vol in list_vol:
        surf_vertical = []
        xsurf = []
        ysurf = []
        tres = 0.3
        lsurf = cubit.get_relatives("volume", id_vol, "surface")
        for k in lsurf:
            normal = cubit.get_surface_normal(k)
            center_point = cubit.get_center_point("surface", k)
            if normal[2] >= -1 * tres and normal[2] <= tres:
                surf_vertical.append(k)
                xsurf.append(center_point[0])
                ysurf.append(center_point[1])
        surf_xmin.append(surf_vertical[xsurf.index(min(xsurf))])
        surf_ymin.append(surf_vertical[ysurf.index(min(ysurf))])
        surf_xmax.append(surf_vertical[xsurf.index(max(xsurf))])
        surf_ymax.append(surf_vertical[ysurf.index(max(ysurf))])
    return surf_xmin, surf_ymin, surf_xmax, surf_ymax
Exemple #11
0
def hor_distance(c1,c2):
    p1=cubit.get_center_point("curve", c1)
    p2=cubit.get_center_point("curve", c2)
    d=(p1[0]-p2[0])**2+(p1[1]-p2[1])**2
    return d
def define_top_bottom_absorbing_surf(zmin_box,zmax_box):
    """
      absorbing_surf_bottom is the list of the absorbing boundary surfaces that correspond to z=zmin
    """
    try:
        cubit.cmd('comment')
    except:
        try:
            import cubit
            cubit.init([""])
        except:
            print 'error importing cubit'
            import sys
            sys.exit()
    absorbing_surf_bottom=[]
    top_surf = []
    
    list_vol=cubit.parse_cubit_list("volume","all")
    init_n_vol=len(list_vol)
#   TO DO : Make zmin_box work properly.
#   zmax_box=cubit.get_total_bounding_box("volume",list_vol)[7]
#   zmin_box=cubit.get_total_bounding_box("volume",list_vol)[6] #it is the z_min of the box ... box= xmin,xmax,d,ymin,ymax,d,zmin...
    xmin_box=cubit.get_total_bounding_box("volume",list_vol)[0]
    xmax_box=cubit.get_total_bounding_box("volume",list_vol)[1]
    ymin_box=cubit.get_total_bounding_box("volume",list_vol)[3]
    ymax_box=cubit.get_total_bounding_box("volume",list_vol)[4]
    list_surf=cubit.parse_cubit_list("surface","all")
   
    print '##boundary box: '
    print '##  x min: ' + str(xmin_box)
    print '##  y min: ' + str(ymin_box)
    print '##  z min: ' + str(zmin_box)
    print '##  x max: ' + str(xmax_box)
    print '##  y max: ' + str(ymax_box)
    print '##  z max: ' + str(zmax_box)

    #box lengths
    x_len = abs( xmax_box - xmin_box)
    y_len = abs( ymax_box - ymin_box)
    z_len = abs( zmax_box - zmin_box)
    
    print '##boundary box: '
    print '##  x length: ' + str(x_len)
    print '##  y length: ' + str(y_len)
    print '##  z length: ' + str(z_len)
    
    # tolerance parameters 
    absorbing_surface_distance_tolerance=0.005
    topographic_surface_distance_tolerance=0.001
    topographic_surface_normal_tolerance=0.2

    for k in list_surf:
        center_point = cubit.get_center_point("surface", k)
        if abs((center_point[2] - zmin_box)/z_len) <= absorbing_surface_distance_tolerance:
             print 'center_point[2]' + str(center_point[2])
             print 'kz:' + str(k)
             absorbing_surf_bottom.append(k)
   
        else:
            sbox=cubit.get_bounding_box('surface',k)
            dz=abs((sbox[7] - zmax_box)/z_len)
            normal=cubit.get_surface_normal(k)
            zn=normal[2]
            dn=abs(zn-1)
            if dz <= topographic_surface_distance_tolerance and dn < topographic_surface_normal_tolerance:
                top_surf.append(k)
    
    return absorbing_surf_bottom,top_surf
Exemple #13
0
def layercake_volume_fromacis_mpiregularmap(filename=None):
    import sys
    import start as start
    #
    mpiflag,iproc,numproc,mpi   = start.start_mpi()
    #
    cfg                         = start.start_cfg(filename=filename)                       
    #
    from utilities import geo2utm, savegeometry
    #
    from math import sqrt
    #
    try:
        mpi.barrier()
    except:
        pass
    #
    #
    command = "comment '"+"PROC: "+str(iproc)+"/"+str(numproc)+" '"
    cubit.cmd(command)
    #
    #get the limit of the volume considering the cpu
    def xwebcut(x):
        command='create planar surface with plane xplane offset '+str(x)
        cubit.cmd(command)
        last_surface=cubit.get_last_id("surface")
        command="webcut volume all tool volume in surf "+str(last_surface)
        cubit.cmd(command)
        command="del surf "+str(last_surface)
        cubit.cmd(command)
        
    def ywebcut(x):
        command='create planar surface with plane yplane offset '+str(x)
        cubit.cmd(command)
        last_surface=cubit.get_last_id("surface")
        command="webcut volume all tool volume in surf "+str(last_surface)
        cubit.cmd(command)
        command="del surf "+str(last_surface)
        cubit.cmd(command)
        
    def translate2zero():
        ss=cubit.parse_cubit_list('surface','all')
        box = cubit.get_total_bounding_box("surface", ss)
        xmin=box[0]
        ymin=box[3]
        cubit.cmd('move surface all x '+str(-1*xmin)+' y '+str(-1*ymin))
        return xmin,ymin
        
    def translate2original(xmin,ymin):
        cubit.cmd('move surface all x '+str(xmin)+' y '+str(ymin))
        
    if mpiflag:
        icpux = iproc % cfg.nproc_xi
        icpuy = int(iproc / cfg.nproc_xi)
    else:
        icpuy=int(cfg.id_proc/cfg.nproc_xi)
        icpux=cfg.id_proc%cfg.nproc_xi
    #
    ner=cubit.get_error_count()
    #
    icurve=0
    isurf=0
    ivertex=0
    #
    xlength=(cfg.xmax-cfg.xmin)/float(cfg.cpux) #length of x slide for chunk
    ylength=(cfg.ymax-cfg.ymin)/float(cfg.cpuy) #length of y slide for chunk
    xmin_cpu=cfg.xmin+(xlength*(icpux))
    ymin_cpu=cfg.ymin+(ylength*(icpuy))
    xmax_cpu=xmin_cpu+xlength
    ymax_cpu=ymin_cpu+ylength
    #
    #importing the surfaces
    for inz in range(cfg.nz-2,-2,-1):
        if cfg.bottomflat and inz==-1:
            command = "create planar surface with plane zplane offset "+str(cfg.depth_bottom)
            cubit.cmd(command)
        else:
            command = "import cubit '"+cfg.filename[inz]+"'"
            cubit.cmd(command)
            
            
    #translate
    xmin,ymin=translate2zero()
    print 'translate ...', -xmin,-ymin
    xmin_cpu=xmin_cpu-xmin
    ymin_cpu=ymin_cpu-ymin
    xmax_cpu=xmax_cpu-xmin
    ymax_cpu=ymax_cpu-ymin
    
    ss=cubit.parse_cubit_list('surface','all')
    box = cubit.get_total_bounding_box("surface", ss)
    print 'dimension... ', box
    #cutting the surfaces
    xwebcut(xmin_cpu)
    xwebcut(xmax_cpu)
    ywebcut(ymin_cpu)
    ywebcut(ymax_cpu)
    #
    list_surface_all=cubit.parse_cubit_list("surface","all")
    #condisidering only the surfaces inside the boundaries
    dict_surf={}
    for isurf in list_surface_all:
        p=cubit.get_center_point("surface",isurf)
        if p[0] < xmin_cpu or p[0] > xmax_cpu or p[1] > ymax_cpu or p[1] < ymin_cpu:
            command = "del surf "+str(isurf)
            cubit.cmd(command)
        else:
            dict_surf[str(isurf)]=p[2]
    z=dict_surf.values()
    z.sort()
    list_surf=[]
    for val in z:
        isurf=[k for k, v in dict_surf.iteritems() if v == val][0]
        list_surf.append(int(isurf))
    #
    
    #lofting the volume
    for i,j in zip(list_surf,list_surf[1:]):
        ner=cubit.get_error_count()
        create_volume(i,j,method=cfg.volumecreation_method)
        #cubitcommand= 'create volume loft surface '+ str(i)+' '+str(j)
        #cubit.cmd(cubitcommand)
        ner2=cubit.get_error_count()
    #
    translate2original(xmin,ymin)
    
    
    if ner == ner2:
        cubitcommand= 'del surface all'
        cubit.cmd(cubitcommand)
        #
        #
        #cubitcommand= 'composite create curve in vol all'
        #cubit.cmd(cubitcommand)
        list_vol=cubit.parse_cubit_list("volume","all")
        if len(list_vol) > 1:     
            cubitcommand= 'imprint volume all'
            cubit.cmd(cubitcommand)
            #cubit_error_stop(iproc,cubitcommand,ner)
            #
            cubitcommand= 'merge all'
            cubit.cmd(cubitcommand)
    #
    savegeometry(iproc,filename=filename)
Exemple #14
0
    def saveMesh3D(self):
        cubit.cmd("brick x 5000 y 5000 z 5000")
        cubit.cmd("create cylinder height 4000 radius 500")
        cubit.cmd("subtract body 2 from body 1")
        volID = cubit.get_last_id("volume")
        self.vol = volID
        self.mesh()
        
        nNodes = cubit.get_node_count()
        meshFile = open(folder+"mesh3D2.xml", 'w')
        meshFile.write('<mesh celltype="tetrahedron" dim="3">\n')
        meshFile.write('  <nodes size="%d">\n' % (nNodes))
        for x in range(0, nNodes):
            coords = cubit.get_nodal_coordinates(x+1)
            meshFile.write('    <node id="%d" x="%f" y="%f" z="%f"/>\n' % (x,coords[0],coords[1],coords[2]))
        meshFile.write('  </nodes>\n')
        
        nTets = cubit.get_tet_count()
        meshFile.write('  <elements size="%d">\n' % (nTets))
        for x in range(0, nTets):
            nodes = cubit.get_connectivity("tet", x+1)
            meshFile.write('    <element id="%d" v0="%d" v1="%d" v2="%d" v3="%d"/>\n' % (x,nodes[0]-1,nodes[1]-1,nodes[2]-1,nodes[3]-1))
        meshFile.write('  </elements>\n')
        meshFile.write('  <element_data type="fiber_transversely_isotropic">\n')
        for x in range(0, nTets):
            meshFile.write('    <element id="%d">\n' %(x))
            meshFile.write('      <fiber>1.000000,0.000000,0.000000</fiber>\n')
            meshFile.write('    </element>\n')
        meshFile.write('  </element_data>\n')
        meshFile.write('  <boundary celltype="triangle" dim="2">\n')
        bsurfs = [10, 11, 12]
        ec = 0
        for x in range(0, len(bsurfs)):
            tris = cubit.get_surface_tris(bsurfs[x])
            surf = cubit.surface(bsurfs[x])
            for y in range(0, len(tris)):
                cp = cubit.get_center_point("tri", tris[y])
                norm = surf.normal_at([cp[0],cp[1],cp[2]])
                #cubit.cmd("create curve location %f %f %f direction %f %f %f length %f" % (cp[0],cp[1],cp[2],norm[0],norm[1],norm[2],200))

                nodes = cubit.get_connectivity("tri", tris[y])
                element = [nodes[0]-1, nodes[1]-1, nodes[2]-1]
                meshFile.write('    <element id="%d" marker="%d" v0="%d" v1="%d" v2="%d" nx="%f" ny="%f" nz="%f"/>\n' % (ec,1.0,element[0],element[1],element[2],norm[0],norm[1],norm[2]))
                ec = ec+1
        meshFile.write('  </boundary>\n')
        meshFile.write('</mesh>\n')
        meshFile.write('<poisson>\n')
        meshFile.write('  <neumann>\n')
        meshFile.write('    <node id="1" marker="1" value="0.5" />\n')
        meshFile.write('  </neumann>\n')
        meshFile.write('</poisson>\n')
        #meshFile.write('<electrophysiology>\n')
        #meshFile.write('  <stimuli number="1">\n')
        #bb = cubit.get_bounding_box("volume", self.vol)
        #x0 = bb[0]
        #x1 = 0.8*x0 + 0.2*bb[1]
        #y0 = bb[3]
        #y1 = 0.8*y0 + 0.2*bb[4]
        #z0 = bb[6]
        #z1 = 0.8*z0 + 0.2*bb[7]
        #meshFile.write('    <stim start="0.00" duration="4.00" value="-35.7140" x0="%f" x1="%f" y0="%f" y1="%f" z0="%f" z1="%f" />\n' % (x0,x1,y0,y1,z0,z1))
        #meshFile.write('  </stimuli>\n')
        #meshFile.write('</electrophysiology>\n')
        meshFile.close()
Exemple #15
0
    def saveMesh(self):
        nNodes = cubit.get_node_count()
        nTets = cubit.get_tet_count()
        meshFile = open(folder+"Cubo.xml", 'w')
        meshFile.write('<mesh celltype="tetrahedron" dim="3">\n')
        meshFile.write('  <nodes size="%d">\n' % (nNodes))
        for x in range(0, nNodes):
            coords = cubit.get_nodal_coordinates(x+1)
            meshFile.write('    <node id="%d" x="%f" y="%f" z="%f"/>\n' % (x,coords[0],coords[1],coords[2]))
        meshFile.write('  </nodes>\n')
        
        meshFile.write('  <elements size="%d">\n' % (nTets))
        for x in range(0, nTets):
            nodes = cubit.get_connectivity("tet", x+1)
            meshFile.write('    <element id="%d" v0="%d" v1="%d" v2="%d" v3="%d"/>\n' % (x,nodes[0]-1,nodes[1]-1,nodes[2]-1,nodes[3]-1))
        meshFile.write('  </elements>\n')
        meshFile.write('  <element_data type="fiber_transversely_isotropic">\n')
        for x in range(0, nTets):
            meshFile.write('    <element id="%d">\n' %(x))
            meshFile.write('      <fiber>1.000000,0.000000,0.000000</fiber>\n')
            meshFile.write('    </element>\n')
        meshFile.write('  </element_data>\n')
        
        meshFile.write('  <boundary celltype="triangle" dim="2">\n')
        bsurfs = cubit.get_relatives("volume", self.vol, "surface")
        ec = 0
        for x in range(0, len(bsurfs)):
        #for x in range(6, len(bsurfs)):
            #if x is not 16 and x is not 14:
            tris = cubit.get_surface_tris(bsurfs[x])
            surf = cubit.surface(bsurfs[x])
            for y in range(0, len(tris)):
                cp = cubit.get_center_point("tri", tris[y])
                norm = surf.normal_at([cp[0],cp[1],cp[2]])
                #cubit.cmd("create curve location %f %f %f direction %f %f %f length %f" % (cp[0],cp[1],cp[2],norm[0],norm[1],norm[2],200))

                nodes = cubit.get_connectivity("tri", tris[y])
                element = [nodes[0]-1, nodes[1]-1, nodes[2]-1]
                meshFile.write('    <element id="%d" marker="%d" v0="%d" v1="%d" v2="%d" nx="%f" ny="%f" nz="%f"/>\n' % (ec,1.0,element[0],element[1],element[2],norm[0],norm[1],norm[2]))
                ec = ec+1
        meshFile.write('  </boundary>\n')

        
        
        #meshFile.write('  <boundary celltype="triangle" dim="2">\n')
        #surfs = cubit.get_relatives("volume", self.vol, "surface")
        #ec = 0
        #for x in range(0, 2):
        #    tris = cubit.get_surface_tris(surfs[x])
        #    for y in range(0, len(tris)):
        #        nodes = cubit.get_connectivity("tri", tris[y])
        #        element = [nodes[0]-1, nodes[1]-1, nodes[2]-1]
        #        ec = ec+1
        #        meshFile.write('    <element id="%d" marker="%d" v0="%d" v1="%d" v2="%d"/>\n' % (ec,x,element[0],element[1],element[2]))
        #meshFile.write('    <element id="%d" marker="%d" v0="%d" v1="%d" v2="%d"/>\n' % (ec+1,2,element[0],element[1],element[2]))
        #meshFile.write('  </boundary>\n')
        
        meshFile.write('</mesh>\n')
        meshFile.write('<poisson>\n')
        meshFile.write('  <neumann>\n')
        #meshFile.write('    <node id="0" marker="0" value="-1.0" />\n')
        meshFile.write('    <node id="1" marker="1" value="0.05"/>\n')
        meshFile.write('  </neumann>\n')
        #meshFile.write('  <dirichlet>\n')
        #meshFile.write('    <node id="2" marker="2" value="0.0" />\n')
        #meshFile.write('  </dirichlet>\n')
        meshFile.write('</poisson>\n')
        
        #meshFile.write('<electrophysiology>\n')
        #meshFile.write('  <stimuli number="1">\n')
        #bb = cubit.get_bounding_box("volume", self.vol)
        #x0 = bb[0]
        #x1 = 0.8*x0 + 0.2*bb[1]
        #y0 = bb[3]
        #y1 = 0.8*y0 + 0.2*bb[4]
        #z0 = bb[6]
        #z1 = 0.8*z0 + 0.2*bb[7]
        #meshFile.write('    <stim start="0.00" duration="4.00" value="-35.7140" x0="%f" x1="%f" y0="%f" y1="%f" z0="%f" z1="%f" />\n' % (x0,x1,y0,y1,z0,z1))
        #meshFile.write('  </stimuli>\n')
        #meshFile.write('</electrophysiology>\n')
        meshFile.close()
print "Convert mesh to Specfem-format..."
os.system('mkdir -p MESH')

## fault surfaces (up/down)
Au = [cubit.get_id_from_name("fault1")]
Ad = [cubit.get_id_from_name("fault2")]

### Obtain the id of boundaries
# I define the original sphere surface as spheresurf. After webcut, CUBIT renames the new-cutted surface by adding @A, @B ...
SpheresurfID = [cubit.get_id_from_name("spheresurf@A")]
# Find the surface ID for the free surface
freesur_tolerance = 3e3
FreesurfID = []
list_surf = cubit.parse_cubit_list("surface", "all")
for k in list_surf:
    center_point = cubit.get_center_point("surface", k)
    if abs(center_point[2]) <= freesur_tolerance:
        FreesurfID.append(k)

print SpheresurfID, FreesurfID
# define blocks
Vol_num = cubit.get_volume_count()
for i in range(Vol_num):
    cubit.cmd('block {0} hex in vol {0}'.format(i + 1))
cubit.cmd('block 1000 face in surface ' +
          str(list(SpheresurfID)).replace("[", " ").replace("]", " "))
cubit.cmd('block 1000 name "face_semisphere"')
cubit.cmd('block 1001 face in surface ' +
          str(list(FreesurfID)).replace("[", " ").replace("]", " "))
cubit.cmd('block 1001 name "face_topo"')
Exemple #17
0
def define_top_bottom_absorbing_surf(zmin_box, zmax_box):
    """
      absorbing_surf_bottom is the list of the absorbing boundary surfaces that correspond to z=zmin
    """
    try:
        cubit.cmd('comment')
    except:
        try:
            import cubit
            cubit.init([""])
        except:
            print('error importing cubit')
            import sys
            sys.exit()
    absorbing_surf_bottom = []
    top_surf = []

    list_vol = cubit.parse_cubit_list("volume", "all")
    init_n_vol = len(list_vol)
    #   TO DO : Make zmin_box work properly.
    #   zmax_box=cubit.get_total_bounding_box("volume",list_vol)[7]
    #   zmin_box=cubit.get_total_bounding_box("volume",list_vol)[6] #it is the z_min of the box ... box= xmin,xmax,d,ymin,ymax,d,zmin...
    xmin_box = cubit.get_total_bounding_box("volume", list_vol)[0]
    xmax_box = cubit.get_total_bounding_box("volume", list_vol)[1]
    ymin_box = cubit.get_total_bounding_box("volume", list_vol)[3]
    ymax_box = cubit.get_total_bounding_box("volume", list_vol)[4]
    list_surf = cubit.parse_cubit_list("surface", "all")

    print('##boundary box: ')
    print('##  x min: ' + str(xmin_box))
    print('##  y min: ' + str(ymin_box))
    print('##  z min: ' + str(zmin_box))
    print('##  x max: ' + str(xmax_box))
    print('##  y max: ' + str(ymax_box))
    print('##  z max: ' + str(zmax_box))

    #box lengths
    x_len = abs(xmax_box - xmin_box)
    y_len = abs(ymax_box - ymin_box)
    z_len = abs(zmax_box - zmin_box)

    print('##boundary box: ')
    print('##  x length: ' + str(x_len))
    print('##  y length: ' + str(y_len))
    print('##  z length: ' + str(z_len))

    # tolerance parameters
    absorbing_surface_distance_tolerance = 0.005
    topographic_surface_distance_tolerance = 0.001
    topographic_surface_normal_tolerance = 0.2

    for k in list_surf:
        center_point = cubit.get_center_point("surface", k)
        if abs((center_point[2] - zmin_box) /
               z_len) <= absorbing_surface_distance_tolerance:
            print('center_point[2] ' + str(center_point[2]))
            print('kz: ' + str(k))
            absorbing_surf_bottom.append(k)

        else:
            sbox = cubit.get_bounding_box('surface', k)
            dz = abs((sbox[7] - zmax_box) / z_len)
            normal = cubit.get_surface_normal(k)
            zn = normal[2]
            dn = abs(zn - 1)
            if dz <= topographic_surface_distance_tolerance and dn < topographic_surface_normal_tolerance:
                top_surf.append(k)

    return absorbing_surf_bottom, top_surf
Exemple #18
0
def mesh_layercake_regularmap(filename=None):
    import sys,os
    import start as start
    mpiflag,iproc,numproc,mpi   = start.start_mpi()
    from utilities import  importgeometry,savemesh,get_v_h_list,cubit_command_check
    #
    numpy                       = start.start_numpy()
    cfg                         = start.start_cfg(filename=filename)
    from math import sqrt
    from sets import Set

    #
    class cubitvolume:
          def __init__(self,ID,intervalv,centerpoint,dimension):
              self.ID=ID
              self.intervalv=intervalv
              self.centerpoint=centerpoint
              self.dim=dimension
          
          def __repr__(self):
              msg="(vol:%3i, vertical interval: %4i, centerpoint: %8.2f)" % (self.ID, self.intervalv,self.centerpoint)
              return msg       
    #
    def by_z(x,y):
        return cmp(x.centerpoint,y.centerpoint)
    #
    #
    #
    list_vol=cubit.parse_cubit_list("volume","all")
    if len(list_vol) != 0:
        pass
    else:
        geometryfile='geometry_vol_'+str(iproc)+'.cub'
        importgeometry(geometryfile,iproc=iproc)
    #
    command = 'composite create curve all'
    cubit.cmd(command)
    print '###"No valid composites can be created from the specified curves."  is NOT a critical ERROR.'
    #
    command = "compress all"
    cubit.cmd(command)
    list_vol=cubit.parse_cubit_list("volume","all")
    nvol=len(list_vol)                                 
    vol=[]
    for id_vol in list_vol:
        p=cubit.get_center_point("volume",id_vol)
        vol.append(cubitvolume(id_vol,1,p[2],0))
    vol.sort(by_z)
    #
    for id_vol in range(0,nvol):
        vol[id_vol].intervalv=cfg.iv_interval[id_vol]
    #
    #
    surf_vertical=[]
    surf_or=[]
    top_surface=0
    top_surface_add=''
    bottom_surface=0
    #
    zmin_box=cubit.get_total_bounding_box("volume",list_vol)[6]
    xmin_box=cubit.get_total_bounding_box("volume",list_vol)[0]
    xmax_box=cubit.get_total_bounding_box("volume",list_vol)[1]
    ymin_box=cubit.get_total_bounding_box("volume",list_vol)[3]
    ymax_box=cubit.get_total_bounding_box("volume",list_vol)[4]
    #
    #
    #interval assignement
    surf_or,surf_vertical,list_curve_or,list_curve_vertical,bottom,top = get_v_h_list(list_vol,chktop=cfg.chktop)
    print 'vertical surfaces: ',surf_vertical    
    
    for k in surf_vertical:
        command = "surface "+str(k)+" scheme submap"
        cubit.cmd(command)
    for k in surf_or:
        command = "surface "+str(k)+" scheme "+cfg.or_mesh_scheme
        cubit.cmd(command)
    #
    ucurve,vcurve=get_uv_curve(list_curve_or)
    schemepave=False
    #
    ucurve_interval={}
    for k in ucurve:
        length=cubit.get_curve_length(k)
        interval=int(2*round(.5*length/cfg.size,0))
        ucurve_interval[k]=interval
        command = "curve "+str(k)+" interval "+str(interval)
        cubit.cmd(command)
        #cubit_error_stop(iproc,command,ner)
        command = "curve "+str(k)+" scheme equal"
        cubit.cmd(command)
        #cubit_error_stop(iproc,command,ner)
    if max(ucurve_interval.values()) != min(ucurve_interval.values()):
        schemepave=True
        print 'mesh scheme is set to pave'
        for sk in surf_or:
            command = "surface "+str(sk)+" scheme pave"
            cubit.cmd(command)
    #
    vcurve_interval={}
    for k in vcurve:
        length=cubit.get_curve_length(k)
        interval=int(2*round(.5*length/cfg.size,0))
        vcurve_interval[k]=interval
        command = "curve "+str(k)+" interval "+str(interval)
        cubit.cmd(command)
        #cubit_error_stop(iproc,command,ner)
        command = "curve "+str(k)+" scheme equal"
        cubit.cmd(command)
        #cubit_error_stop(iproc,command,ner)

    if max(vcurve_interval.values()) != min(vcurve_interval.values()):
        print 'mesh scheme is set to pave'
        schemepave=True
        for sk in surf_or:
            command = "surface "+str(sk)+" scheme pave"
            cubit.cmd(command)
    #
    for s in surf_vertical:
        lcurve=cubit.get_relatives("surface",s,"curve")
        interval_store=[]
        for k in lcurve:
            interval_curve=cubit.get_mesh_intervals('curve',k)
            if k in list_curve_vertical:
                volume_id = cubit.get_owning_volume("curve", k)
                for idv in range(0,nvol):
                    if vol[idv].ID == volume_id:
                        int_v=vol[idv].intervalv
                command = "curve "+str(k)+" interval "+str(int_v)
                cubit.cmd(command)
                #cubit_error_stop(iproc,command,ner)
                command = "curve "+str(k)+" scheme equal"
                cubit.cmd(command)
                #cubit_error_stop(iproc,command,ner)
            else:
                interval_store.append((k,interval_curve))
            if len(interval_store) != 0:
                interval_min=min([iv[1] for iv in interval_store])
                command = "curve "+' '.join(str(iv[0]) for iv in interval_store)+" interval "+str(interval_min)
                cubit.cmd(command)
                #cubit_error_stop(iproc,command,ner)
                command = "curve "+' '.join(str(iv[0]) for iv in interval_store)+" scheme equal"
                cubit.cmd(command)
                #cubit_error_stop(iproc,command,ner)
        command = "surface "+str(s)+" scheme submap"
        cubit.cmd(command)
        
    #cubit_error_stop(iproc,command,ner)
    #
    #meshing
    if cfg.or_mesh_scheme == 'pave' or schemepave:
        command='mesh surf '+' '.join(str(t) for t in top)
        status=cubit_command_check(iproc,command,stop=True)
        #cubit.cmd(command)    
    elif cfg.or_mesh_scheme == 'map':
        command='mesh surf '+' '.join(str(t) for t in bottom)
        status=cubit_command_check(iproc,command,stop=True)
        #cubit.cmd(command)
    for id_volume in range(nvol-1,-1,-1):
        command = "mesh vol "+str(vol[id_volume].ID)
        status=cubit_command_check(iproc,command,stop=False)
        if not status:
            for s in surf_vertical:
                command_surf="mesh surf "+str(s)
                cubit.cmd(command_surf)
            command_set_meshvol='volume all redistribute nodes on\nvolume all autosmooth target off\nvolume all scheme Sweep Vector 0 0 -1\nvolume all sweep smooth Auto\n'
            status=cubit_command_check(iproc,command_set_meshvol,stop=False)
            status=cubit_command_check(iproc,command,stop=True)    
    
    #
    #smoothing
    print iproc, 'untangling...'
    cmd="volume all smooth scheme untangle beta 0.02 cpu 10"
    cubit.cmd(cmd)
    cmd="smooth volume all"
    cubit.cmd(cmd)
    
    
    
    if  cfg.smoothing:
        print 'smoothing .... '+str(cfg.smoothing)
        cubitcommand= 'surf all smooth scheme laplacian '
        cubit.cmd(cubitcommand)
        cubitcommand= 'smooth surf all'
        cubit.cmd(cubitcommand)
        #
        cubitcommand= 'vol all smooth scheme laplacian '
        cubit.cmd(cubitcommand)
        cubitcommand= 'smooth vol all'
        cubit.cmd(cubitcommand)
    #
    #
    ##vertical refinement
    ##for nvol = 3 
    ##
    ##___________________________ interface 4
    ##                 
    ##vol 2              
    ##___________________________ interface 3
    ##
    ##vol 1
    ##___________________________ interface 2
    ##
    ##vol 0
    ##___________________________ interface 1
    ##
    refinement(nvol,vol,filename=filename)
    #
    #top layer vertical coarsening
    print 'coarsening top layer... ',cfg.coarsening_top_layer
    if  cfg.coarsening_top_layer:
        from sets import Set
        cubitcommand= 'del mesh vol '+str(vol[-1].ID)+ ' propagate'
        cubit.cmd(cubitcommand)
        s1=Set(list_curve_vertical)
        command = "group 'list_curve_tmp' add curve "+"in vol "+str(vol[-1].ID)
        cubit.cmd(command)
        group=cubit.get_id_from_name("list_curve_tmp")
        list_curve_tmp=cubit.get_group_curves(group)
        command = "delete group "+ str(group)
        cubit.cmd(command)
        s2=Set(list_curve_tmp)
        lc=list(s1 & s2)
        #
        cubitcommand= 'curve '+' '.join(str(x) for x in lc)+' interval '+str(cfg.actual_vertical_interval_top_layer)
        cubit.cmd(cubitcommand)
        cubitcommand= 'mesh vol '+str(vol[-1].ID)
        cubit.cmd(cubitcommand)
    #
    n=cubit.get_sideset_id_list()
    if len(n) != 0:
        command = "del sideset all"
        cubit.cmd(command)
    n=cubit.get_block_id_list()
    if len(n) != 0:    
        command = "del block all"
        cubit.cmd(command)
    #
    import boundary_definition
    entities=['face']
    print iproc, 'hex block definition...'
    boundary_definition.define_bc(entities,parallel=True,cpux=cfg.cpux,cpuy=cfg.cpuy,cpuxmin=0,cpuymin=0,optionsea=False)
    #save mesh
    
    print iproc, 'untangling...'
    cmd="volume all smooth scheme untangle beta 0.02 cpu 10"
    cubit.cmd(cmd)
    cmd="smooth volume all"
    cubit.cmd(cmd)
    
    print iproc, 'saving...'
    savemesh(mpiflag,iproc=iproc,filename=filename)
def define_parallel_absorbing_surf():
    """
    define the absorbing surfaces for a layered topological box where boundary are surfaces parallel to the axis.
    it returns absorbing_surf,absorbing_surf_xmin,absorbing_surf_xmax,absorbing_surf_ymin,absorbing_surf_ymax,absorbing_surf_bottom,topo_surf
    where
    absorbing_surf is the list of all the absorbing boundary surf
    absorbing_surf_xmin is the list of the absorbing boundary surfaces that correnspond to x=xmin
    ...
    absorbing_surf_bottom is the list of the absorbing boundary surfaces that correspond to z=zmin
    """
    try:
        cubit.cmd('comment')
    except:
        try:
            import cubit
            cubit.init([""])
        except:
            print 'error importing cubit'
            import sys
            sys.exit()
    absorbing_surf_xmin = []
    absorbing_surf_xmax = []
    absorbing_surf_ymin = []
    absorbing_surf_ymax = []
    absorbing_surf_bottom = []
    top_surf = []

    list_vol = cubit.parse_cubit_list("volume", "all")
    init_n_vol = len(list_vol)
    zmax_box = cubit.get_total_bounding_box("volume", list_vol)[7]
    zmin_box = cubit.get_total_bounding_box(
        "volume", list_vol
    )[6]  #it is the z_min of the box ... box= xmin,xmax,d,ymin,ymax,d,zmin...
    xmin_box = cubit.get_total_bounding_box("volume", list_vol)[0]
    xmax_box = cubit.get_total_bounding_box("volume", list_vol)[1]
    ymin_box = cubit.get_total_bounding_box("volume", list_vol)[3]
    ymax_box = cubit.get_total_bounding_box("volume", list_vol)[4]
    list_surf = cubit.parse_cubit_list("surface", "all")
    print '##boundary box: '
    print '##  x min: ' + str(xmin_box)
    print '##  y min: ' + str(ymin_box)
    print '##  z min: ' + str(zmin_box)
    print '##  x max: ' + str(xmax_box)
    print '##  y max: ' + str(ymax_box)
    print '##  z max: ' + str(zmax_box)

    #box lengths
    x_len = abs(xmax_box - xmin_box)
    y_len = abs(ymax_box - ymin_box)
    z_len = abs(zmax_box - zmin_box)

    print '##boundary box: '
    print '##  x length: ' + str(x_len)
    print '##  y length: ' + str(y_len)
    print '##  z length: ' + str(z_len)

    # tolerance parameters
    absorbing_surface_distance_tolerance = 0.005
    topographic_surface_distance_tolerance = 0.001
    topographic_surface_normal_tolerance = 0.2

    for k in list_surf:
        center_point = cubit.get_center_point("surface", k)
        if abs((center_point[0] - xmin_box) /
               x_len) <= absorbing_surface_distance_tolerance:
            absorbing_surf_xmin.append(k)
        elif abs((center_point[0] - xmax_box) /
                 x_len) <= absorbing_surface_distance_tolerance:
            absorbing_surf_xmax.append(k)
        elif abs((center_point[1] - ymin_box) /
                 y_len) <= absorbing_surface_distance_tolerance:
            absorbing_surf_ymin.append(k)
        elif abs((center_point[1] - ymax_box) /
                 y_len) <= absorbing_surface_distance_tolerance:
            absorbing_surf_ymax.append(k)
        elif abs((center_point[2] - zmin_box) /
                 z_len) <= absorbing_surface_distance_tolerance:
            print 'center_point[2]' + str(center_point[2])
            print 'kz:' + str(k)
            absorbing_surf_bottom.append(k)

        else:
            sbox = cubit.get_bounding_box('surface', k)
            dz = abs((sbox[7] - zmax_box) / z_len)
            normal = cubit.get_surface_normal(k)
            zn = normal[2]
            dn = abs(zn - 1)
            if dz <= topographic_surface_distance_tolerance and dn < topographic_surface_normal_tolerance:
                top_surf.append(k)

    return absorbing_surf_xmin, absorbing_surf_xmax, absorbing_surf_ymin, absorbing_surf_ymax, absorbing_surf_bottom, top_surf
Exemple #20
0
def get_v_h_list(vol_id_list, chktop=False):
    """return the lists of the cubit ID of vertical/horizontal surface and vertical/horizontal curves
    where v/h is defined by the distance of the z normal component from the axis direction
    the parameter cfg.tres is the threshold as for example if 
    -tres <= normal[2] <= tres 
    then the surface is vertical
    #
    usage: surf_or,surf_vertical,list_curve_or,list_curve_vertical,bottom,top = get_v_h_list(list_vol,chktop=False)
    """
    #
    tres = 0.3

    try:
        nvol = len(vol_id_list)
    except:
        nvol = 1
        vol_id_list = [vol_id_list]
    surf_vertical = []
    surf_or = []
    list_curve_vertical = []
    list_curve_or = []
    #
    #
    for id_vol in vol_id_list:
        lsurf = cubit.get_relatives("volume", id_vol, "surface")
        for k in lsurf:
            normal = cubit.get_surface_normal(k)
            center_point = cubit.get_center_point("surface", k)
            if -1 * tres <= normal[2] <= tres:
                surf_vertical.append(k)
                lcurve = cubit.get_relatives("surface", k, "curve")
                list_curve_vertical = list_curve_vertical + list(lcurve)
            else:
                surf_or.append(k)
                lcurve = cubit.get_relatives("surface", k, "curve")
                list_curve_or = list_curve_or + list(lcurve)
    for x in list_curve_or:
        try:
            list_curve_vertical.remove(x)
        except:
            pass

    #find the top and the bottom surfaces
    k = surf_or[0]
    center_point = cubit.get_center_point("surface", k)[2]
    center_point_top = center_point
    center_point_bottom = center_point
    top = k
    bottom = k
    for k in surf_or[1:]:
        center_point = cubit.get_center_point("surface", k)[2]
        if center_point > center_point_top:
            center_point_top = center_point
            top = k
        elif center_point < center_point_bottom:
            center_point_bottom = center_point
            bottom = k
    #check that a top surface exists
    #it assume that the z coord of the center point
    if chktop:
        k = lsurf[0]
        vertical_centerpoint_top = cubit.get_center_point("surface", k)[2]
        vertical_zmax_box_top = cubit.get_bounding_box('surface', k)[7]
        normal_top = cubit.get_surface_normal(k)
        top = k
        for k in lsurf:
            vertical_centerpoint = cubit.get_center_point("surface", k)[2]
            vertical_zmax_box = cubit.get_bounding_box('surface', k)[7]
            normal = cubit.get_surface_normal(k)
            check = (vertical_centerpoint >= vertical_centerpoint_top) and (
                vertical_zmax_box >= vertical_zmax_box_top) and (normal >=
                                                                 normal_top)
            if check:
                top = k
        if top in surf_vertical:
            surf_vertical.remove(top)
        if top not in surf_or:
            surf_or.append(top)
    #if more than one surf is on the top, I get all the surfaces that are in touch with top surface but not the vertical surfaces
    surftop = list(cubit.get_adjacent_surfaces(
        "surface", top))  #top is included in the list
    for s in surf_vertical:
        try:
            surftop.remove(s)
        except:
            pass
    top = surftop
    #check that all the surf are Horizontal or vertical
    surf_all = surf_vertical + surf_or
    if len(surf_all) != len(lsurf):
        print 'not all the surf are horizontal or vertical, check the normals'
        print 'list of surfaces: ', surf_all
        print 'list of vertical surface', surf_vertical
        print 'list of horizontal surface', surf_or

    bottom = [bottom]
    return surf_or, surf_vertical, list_curve_or, list_curve_vertical, bottom, top
Exemple #21
0
def define_surf(ip=0,
                cpuxmin=0,
                cpuxmax=1,
                cpuymin=0,
                cpuymax=1,
                cpux=1,
                cpuy=1):
    """
    define the absorbing surfaces for a layered topological box where boundary are surfaces parallel to the axis.
    it returns absorbing_surf,absorbing_surf_xmin,absorbing_surf_xmax,absorbing_surf_ymin,absorbing_surf_ymax,absorbing_surf_bottom,topo_surf
    where
    absorbing_surf is the list of all the absorbing boundary surf
    absorbing_surf_xmin is the list of the absorbing boundary surfaces that correnspond to x=xmin
    ...
    absorbing_surf_bottom is the list of the absorbing boundary surfaces that correspond to z=zmin
    """
    from utilities import get_v_h_list
    #
    from sets import Set

    def product(*args, **kwds):
        # product('ABCD', 'xy') --> Ax Ay Bx By Cx Cy Dx Dy
        # product(range(2), repeat=3) --> 000 001 010 011 100 101 110 111
        # for compatibility with python2.5
        pools = map(tuple, args) * kwds.get('repeat', 1)
        result = [[]]
        for pool in pools:
            result = [x + [y] for x in result for y in pool]
        return result

    absorbing_surf = []
    xmin = []
    xmax = []
    ymin = []
    ymax = []
    #
    top_surf = []
    bottom_surf = []
    list_vol = cubit.parse_cubit_list("volume", "all")
    zmax_box = cubit.get_total_bounding_box("volume", list_vol)[7]
    zmin_box = cubit.get_total_bounding_box(
        "volume", list_vol
    )[6]  #it is the z_min of the box ... box= xmin,xmax,d,ymin,ymax,d,zmin...
    xmin_box = cubit.get_total_bounding_box("volume", list_vol)[0]
    xmax_box = cubit.get_total_bounding_box("volume", list_vol)[1]
    ymin_box = cubit.get_total_bounding_box("volume", list_vol)[3]
    ymax_box = cubit.get_total_bounding_box("volume", list_vol)[4]
    list_surf = cubit.parse_cubit_list("surface", "all")

    absorbing_surface_distance_tolerance = 0.001
    topographic_surface_distance_tolerance = 0.1
    topographic_surface_normal_tolerance = 0.4

    lv = []
    for k in list_surf:
        sbox = cubit.get_bounding_box('surface', k)
        if zmax_box == 0 and sbox[7] == 0:
            dzmax = 0
        elif zmax_box == 0 or sbox[7] == 0:
            dzmax = abs(sbox[7] - zmax_box)
        else:
            dzmax = abs(sbox[7] - zmax_box) / max(abs(sbox[7]), abs(zmax_box))
        if zmin_box == 0 and sbox[6] == 0:
            dzmin = 0
        elif zmin_box == 0 or sbox[6] == 0:
            dzmin = abs(sbox[6] - zmin_box)
        else:
            dzmin = abs(sbox[6] - zmin_box) / max(abs(sbox[6]), abs(zmin_box))
        normal = cubit.get_surface_normal(k)
        zn = normal[2]
        if dzmax <= topographic_surface_distance_tolerance and zn > topographic_surface_normal_tolerance:
            top_surf.append(k)
            list_vertex = cubit.get_relatives('surface', k, 'vertex')
            for v in list_vertex:
                valence = cubit.get_valence(v)
                if valence <= 4:  #valence 3 is a corner, 4 is a vertex between 2 volumes, > 4 is a vertex not in the boundaries
                    lv.append(v)
        elif dzmin <= 0.001 and zn < -1 + topographic_surface_normal_tolerance:
            bottom_surf.append(k)
    if len(top_surf) == 0:  #assuming that one topo surface need to be selected
        _, _, _, _, _, top_surf = get_v_h_list(list_vol, chktop=False)
    lp = []
    labelp = []
    combs = product(lv, lv)
    for comb in combs:
        v1 = comb[0]
        v2 = comb[1]
        c = Set(cubit.get_relatives("vertex", v1, "curve")) & Set(
            cubit.get_relatives("vertex", v2, "curve"))
        if len(c) == 1:
            p = cubit.get_center_point("curve", list(c)[0])
            labelp.append(list(c)[0])
    labelps = Set(labelp)
    for c in labelps:
        p = cubit.get_center_point("curve", c)
        lp.append(p)

    for k in list_surf:
        center_point = cubit.get_center_point("surface", k)
        for p in lp:
            try:
                if abs((center_point[0] - p[0]) /
                       p[0]) <= absorbing_surface_distance_tolerance and abs(
                           (center_point[1] - p[1]) /
                           p[1]) <= absorbing_surface_distance_tolerance:
                    absorbing_surf.append(k)
                    break
            except:
                if -1 <= center_point[0] <= 1 and -1 <= center_point[1] <= 1:
                    absorbing_surf.append(k)
                    break
    #
    four_side = True
    if four_side:
        xmintmp, ymintmp, xmaxtmp, ymaxtmp = define_4side_lateral_surfaces()
        xmin = list(Set(xmintmp) - Set(xmaxtmp))
        xmax = list(Set(xmaxtmp) - Set(xmintmp))
        ymin = list(Set(ymintmp) - Set(ymaxtmp))
        ymax = list(Set(ymaxtmp) - Set(ymintmp))
        abs_xmintmp, abs_xmaxtmp, abs_ymintmp, abs_ymaxtmp = lateral_boundary_are_absorbing(
            ip, cpuxmin, cpuxmax, cpuymin, cpuymax, cpux, cpuy)
        abs_xmin = list(Set(abs_xmintmp) - Set(abs_xmaxtmp))
        abs_xmax = list(Set(abs_xmaxtmp) - Set(abs_xmintmp))
        abs_ymin = list(Set(abs_ymintmp) - Set(abs_ymaxtmp))
        abs_ymax = list(Set(abs_ymaxtmp) - Set(abs_ymintmp))
    return absorbing_surf, abs_xmin, abs_xmax, abs_ymin, abs_ymax, top_surf, bottom_surf, xmin, ymin, xmax, ymax
Exemple #22
0
def layercake_volume_fromacis_mpiregularmap(filename=None):
    import sys
    import start as start
    #
    mpiflag, iproc, numproc, mpi = start.start_mpi()
    #
    cfg = start.start_cfg(filename=filename)
    #
    from utilities import geo2utm, savegeometry
    #
    from math import sqrt
    #
    try:
        mpi.barrier()
    except:
        pass
    #
    #
    command = "comment '" + "PROC: " + str(iproc) + "/" + str(numproc) + " '"
    cubit.cmd(command)

    #
    #get the limit of the volume considering the cpu
    def xwebcut(x):
        command = 'create planar surface with plane xplane offset ' + str(x)
        cubit.cmd(command)
        last_surface = cubit.get_last_id("surface")
        command = "webcut volume all tool volume in surf " + str(last_surface)
        cubit.cmd(command)
        command = "del surf " + str(last_surface)
        cubit.cmd(command)

    def ywebcut(x):
        command = 'create planar surface with plane yplane offset ' + str(x)
        cubit.cmd(command)
        last_surface = cubit.get_last_id("surface")
        command = "webcut volume all tool volume in surf " + str(last_surface)
        cubit.cmd(command)
        command = "del surf " + str(last_surface)
        cubit.cmd(command)

    def translate2zero():
        ss = cubit.parse_cubit_list('surface', 'all')
        box = cubit.get_total_bounding_box("surface", ss)
        xmin = box[0]
        ymin = box[3]
        cubit.cmd('move surface all x ' + str(-1 * xmin) + ' y ' +
                  str(-1 * ymin))
        return xmin, ymin

    def translate2original(xmin, ymin):
        cubit.cmd('move surface all x ' + str(xmin) + ' y ' + str(ymin))

    if mpiflag:
        icpux = iproc % cfg.nproc_xi
        icpuy = int(iproc / cfg.nproc_xi)
    else:
        icpuy = int(cfg.id_proc / cfg.nproc_xi)
        icpux = cfg.id_proc % cfg.nproc_xi
    #
    ner = cubit.get_error_count()
    #
    icurve = 0
    isurf = 0
    ivertex = 0
    #
    xlength = (cfg.xmax - cfg.xmin) / float(
        cfg.cpux)  #length of x slide for chunk
    ylength = (cfg.ymax - cfg.ymin) / float(
        cfg.cpuy)  #length of y slide for chunk
    xmin_cpu = cfg.xmin + (xlength * (icpux))
    ymin_cpu = cfg.ymin + (ylength * (icpuy))
    xmax_cpu = xmin_cpu + xlength
    ymax_cpu = ymin_cpu + ylength
    #
    #importing the surfaces
    for inz in range(cfg.nz - 2, -2, -1):
        if cfg.bottomflat and inz == -1:
            command = "create planar surface with plane zplane offset " + str(
                cfg.depth_bottom)
            cubit.cmd(command)
        else:
            command = "import cubit '" + cfg.filename[inz] + "'"
            cubit.cmd(command)

    #translate
    xmin, ymin = translate2zero()
    print 'translate ...', -xmin, -ymin
    xmin_cpu = xmin_cpu - xmin
    ymin_cpu = ymin_cpu - ymin
    xmax_cpu = xmax_cpu - xmin
    ymax_cpu = ymax_cpu - ymin

    ss = cubit.parse_cubit_list('surface', 'all')
    box = cubit.get_total_bounding_box("surface", ss)
    print 'dimension... ', box
    #cutting the surfaces
    xwebcut(xmin_cpu)
    xwebcut(xmax_cpu)
    ywebcut(ymin_cpu)
    ywebcut(ymax_cpu)
    #
    list_surface_all = cubit.parse_cubit_list("surface", "all")
    #condisidering only the surfaces inside the boundaries
    dict_surf = {}
    for isurf in list_surface_all:
        p = cubit.get_center_point("surface", isurf)
        if p[0] < xmin_cpu or p[0] > xmax_cpu or p[1] > ymax_cpu or p[
                1] < ymin_cpu:
            command = "del surf " + str(isurf)
            cubit.cmd(command)
        else:
            dict_surf[str(isurf)] = p[2]
    z = dict_surf.values()
    z.sort()
    list_surf = []
    for val in z:
        isurf = [k for k, v in dict_surf.iteritems() if v == val][0]
        list_surf.append(int(isurf))
    #

    #lofting the volume
    for i, j in zip(list_surf, list_surf[1:]):
        ner = cubit.get_error_count()
        create_volume(i, j, method=cfg.volumecreation_method)
        #cubitcommand= 'create volume loft surface '+ str(i)+' '+str(j)
        #cubit.cmd(cubitcommand)
        ner2 = cubit.get_error_count()
    #
    translate2original(xmin, ymin)

    if ner == ner2:
        cubitcommand = 'del surface all'
        cubit.cmd(cubitcommand)
        #
        #
        #cubitcommand= 'composite create curve in vol all'
        #cubit.cmd(cubitcommand)
        list_vol = cubit.parse_cubit_list("volume", "all")
        if len(list_vol) > 1:
            cubitcommand = 'imprint volume all'
            cubit.cmd(cubitcommand)
            #cubit_error_stop(iproc,cubitcommand,ner)
            #
            cubitcommand = 'merge all'
            cubit.cmd(cubitcommand)
    #
    savegeometry(iproc, filename=filename)
def define_surf(ip=0,cpuxmin=0,cpuxmax=1,cpuymin=0,cpuymax=1,cpux=1,cpuy=1):
    """
    define the absorbing surfaces for a layered topological box where boundary are surfaces parallel to the axis.
    it returns absorbing_surf,absorbing_surf_xmin,absorbing_surf_xmax,absorbing_surf_ymin,absorbing_surf_ymax,absorbing_surf_bottom,topo_surf
    where
    absorbing_surf is the list of all the absorbing boundary surf
    absorbing_surf_xmin is the list of the absorbing boundary surfaces that correnspond to x=xmin
    ...
    absorbing_surf_bottom is the list of the absorbing boundary surfaces that correspond to z=zmin
    """
    from utilities import get_v_h_list
    #
    from sets import Set
    def product(*args, **kwds):
        # product('ABCD', 'xy') --> Ax Ay Bx By Cx Cy Dx Dy
        # product(range(2), repeat=3) --> 000 001 010 011 100 101 110 111
        # for compatibility with python2.5
        pools = map(tuple, args) * kwds.get('repeat', 1)
        result = [[]]
        for pool in pools:
            result = [x+[y] for x in result for y in pool]
        return result
    absorbing_surf=[]
    xmin=[]
    xmax=[]
    ymin=[]
    ymax=[]
    #
    top_surf=[]
    bottom_surf=[]
    list_vol=cubit.parse_cubit_list("volume","all")
    zmax_box=cubit.get_total_bounding_box("volume",list_vol)[7]
    zmin_box=cubit.get_total_bounding_box("volume",list_vol)[6] #it is the z_min of the box ... box= xmin,xmax,d,ymin,ymax,d,zmin...
    xmin_box=cubit.get_total_bounding_box("volume",list_vol)[0]
    xmax_box=cubit.get_total_bounding_box("volume",list_vol)[1]
    ymin_box=cubit.get_total_bounding_box("volume",list_vol)[3]
    ymax_box=cubit.get_total_bounding_box("volume",list_vol)[4]
    list_surf=cubit.parse_cubit_list("surface","all")

    absorbing_surface_distance_tolerance=0.001
    topographic_surface_distance_tolerance=0.1
    topographic_surface_normal_tolerance=0.4

    lv=[]
    for k in list_surf:
        sbox=cubit.get_bounding_box('surface',k)
        if zmax_box == 0 and sbox[7] == 0:
             dzmax=0
        elif zmax_box == 0 or sbox[7] == 0:
            dzmax=abs(sbox[7] - zmax_box)
        else:
            dzmax=abs(sbox[7] - zmax_box)/max(abs(sbox[7]),abs(zmax_box))
        if zmin_box == 0 and sbox[6] == 0:
             dzmin=0
        elif zmin_box == 0 or sbox[6] == 0:
            dzmin=abs(sbox[6] - zmin_box)
        else:
            dzmin=abs(sbox[6] - zmin_box)/max(abs(sbox[6]),abs(zmin_box))
        normal=cubit.get_surface_normal(k)
        zn=normal[2]
        if dzmax <= topographic_surface_distance_tolerance and zn > topographic_surface_normal_tolerance:
            top_surf.append(k)
            list_vertex=cubit.get_relatives('surface',k,'vertex')
            for v in list_vertex:
                valence=cubit.get_valence(v)
                if valence <= 4: #valence 3 is a corner, 4 is a vertex between 2 volumes, > 4 is a vertex not in the boundaries
                    lv.append(v)
        elif dzmin <= 0.001 and zn < -1+topographic_surface_normal_tolerance:
            bottom_surf.append(k)
    if len(top_surf) ==0: #assuming that one topo surface need to be selected
            _,_,_,_,_,top_surf=get_v_h_list(list_vol,chktop=False)
    lp=[]
    labelp=[]
    combs=product(lv,lv)
    for comb in combs:
        v1=comb[0]
        v2=comb[1]
        c=Set(cubit.get_relatives("vertex",v1,"curve")) & Set(cubit.get_relatives("vertex",v2,"curve"))
        if len(c) == 1:
            p=cubit.get_center_point("curve",list(c)[0])
            labelp.append(list(c)[0])
    labelps=Set(labelp)
    for c in labelps:
        p=cubit.get_center_point("curve",c)
        lp.append(p)

    for k in list_surf:
        center_point = cubit.get_center_point("surface", k)
        for p in lp:
            try:
                if abs((center_point[0] - p[0])/p[0]) <= absorbing_surface_distance_tolerance and abs((center_point[1] - p[1])/p[1]) <= absorbing_surface_distance_tolerance:
                    absorbing_surf.append(k)
                    break
            except:
                if -1 <= center_point[0] <= 1 and -1 <= center_point[1] <= 1:
                    absorbing_surf.append(k)
                    break
    #
    four_side=True
    if four_side:
        xmintmp,ymintmp,xmaxtmp,ymaxtmp=define_4side_lateral_surfaces()
        xmin=list(Set(xmintmp)-Set(xmaxtmp))
        xmax=list(Set(xmaxtmp)-Set(xmintmp))
        ymin=list(Set(ymintmp)-Set(ymaxtmp))
        ymax=list(Set(ymaxtmp)-Set(ymintmp))
        abs_xmintmp,abs_xmaxtmp,abs_ymintmp,abs_ymaxtmp=lateral_boundary_are_absorbing(ip,cpuxmin,cpuxmax,cpuymin,cpuymax,cpux,cpuy)
        abs_xmin=list(Set(abs_xmintmp)-Set(abs_xmaxtmp))
        abs_xmax=list(Set(abs_xmaxtmp)-Set(abs_xmintmp))
        abs_ymin=list(Set(abs_ymintmp)-Set(abs_ymaxtmp))
        abs_ymax=list(Set(abs_ymaxtmp)-Set(abs_ymintmp))
    return absorbing_surf,abs_xmin,abs_xmax,abs_ymin,abs_ymax,top_surf,bottom_surf,xmin,ymin,xmax,ymax
def define_absorbing_surf_nopar():
    """
    define the absorbing surfaces for a layered topological box where boundary surfaces are not parallel to the axis.
    it returns absorbing_surf,topo_surf
    where
    absorbing_surf is the list of all the absorbing boundary surf
    """
    try:
        cubit.cmd('comment')
    except:
        try:
            import cubit
            cubit.init([""])
        except:
            print 'error importing cubit'
            import sys
            sys.exit()
    from sets import Set
    def product(*args, **kwds):
        # product('ABCD', 'xy') --> Ax Ay Bx By Cx Cy Dx Dy
        # product(range(2), repeat=3) --> 000 001 010 011 100 101 110 111
        pools = map(tuple, args) * kwds.get('repeat', 1)
        result = [[]]
        for pool in pools:
            result = [x+[y] for x in result for y in pool]
        return result
    absorbing_surf=[]
    absorbing_surf_xmin=[]
    absorbing_surf_xmax=[]
    absorbing_surf_ymin=[]
    absorbing_surf_ymax=[]
    absorbing_surf_bottom=[]
    top_surf=[]
    list_vol=cubit.parse_cubit_list("volume","all")
    init_n_vol=len(list_vol)
    zmax_box=cubit.get_total_bounding_box("volume",list_vol)[7]
    zmin_box=cubit.get_total_bounding_box("volume",list_vol)[6] #it is the z_min of the box ... box= xmin,xmax,d,ymin,ymax,d,zmin...
    xmin_box=cubit.get_total_bounding_box("volume",list_vol)[0]
    xmax_box=cubit.get_total_bounding_box("volume",list_vol)[1]
    ymin_box=cubit.get_total_bounding_box("volume",list_vol)[3]
    ymax_box=cubit.get_total_bounding_box("volume",list_vol)[4]
    list_surf=cubit.parse_cubit_list("surface","all")
    lv=[]
    for k in list_surf:
            sbox=cubit.get_bounding_box('surface',k)
            dzmax=abs((sbox[7] - zmax_box)/zmax_box)
            dzmin=abs((sbox[6] - zmin_box)/zmin_box)
            normal=cubit.get_surface_normal(k)
            zn=normal[2]
            if dzmax <= 0.001 and zn > 0.7:
                top_surf.append(k)
                list_vertex=cubit.get_relatives('surface',k,'vertex')
                for v in list_vertex:
                    valence=cubit.get_valence(v)
                    if valence <= 4: #valence 3 is a corner, 4 is a vertex between 2 volumes, > 4 is a vertex not in the boundaries
                        lv.append(v)
            elif dzmin <= 0.001 and zn < -0.7:
                absorbing_surf.append(k)
    lp=[]
    combs=product(lv,lv)
    for comb in combs:
        v1=comb[0]
        v2=comb[1]
        c=Set(cubit.get_relatives("vertex",v1,"curve")) & Set(cubit.get_relatives("vertex",v2,"curve"))
        if len(c) == 1:
            p=cubit.get_center_point("curve",list(c)[0])
            lp.append(p)
    for k in list_surf:
        center_point = cubit.get_center_point("surface", k)
        for p in lp:
            if abs((center_point[0] - p[0])/p[0]) <= 0.005 and abs((center_point[1] - p[1])/p[1]) <= 0.005:
             absorbing_surf.append(k)
             break
    return absorbing_surf,top_surf
Exemple #25
0
## fault surfaces (up/down)
Au = [cubit.get_id_from_name("fault1")]
Ad = [cubit.get_id_from_name("fault2")]

#  FOR THE BULK (Seismic wave propagation part for SPECFEM3D)
entities = ['face']
xmin, xmax, ymin, ymax, bottom, topo = absorbing_boundary.define_parallel_absorbing_surf(
)
# The above function is expected to obtain the correct topo and bottom surfaces, but for curved fault this function may fail (I don't know why).
# Here I try to obtain the topo and bottom surface automaticly in case the above function fails.
# If this part also doesn't work well (such as the topography has more than one surfaces), please setup bottom=[surface_list] and topo=[surface_list] manually.
list_surf = cubit.parse_cubit_list("surface", "all")
center_depth = []
for k in list_surf:
    center_depth.append(cubit.get_center_point("surface", k)[2])
bottom = numpy.asarray(list_surf)[numpy.argwhere(
    center_depth == numpy.amin(center_depth))[:, 0]].tolist()
topo = numpy.asarray(list_surf)[numpy.argwhere(
    center_depth == numpy.amax(center_depth))[:, 0]].tolist()
#bottom = [surface_list]
#topo   = [surface_list]
if (len(bottom) == 0 or len(topo) == 0):
    print "Fail in obtaining the topo and bottom surfaces."
    print "Please change setup topo and bottom surfaces manually."
    exit()
print "Xmin surface list: ", xmin
print "Xmax surface list: ", xmax
print "Ymin surface list: ", ymin
print "Ymax surface list: ", ymax
print "Bott surface list: ", bottom
def define_absorbing_surf():
    """
    define the absorbing surfaces for a layered topological box where boundary are surfaces parallel to the axis.
    it returns absorbing_surf,absorbing_surf_xmin,absorbing_surf_xmax,absorbing_surf_ymin,absorbing_surf_ymax,absorbing_surf_bottom,topo_surf
    where
    absorbing_surf is the list of all the absorbing boundary surf
    absorbing_surf_xmin is the list of the absorbing boundary surfaces that correnspond to x=xmin
    ...
    absorbing_surf_bottom is the list of the absorbing boundary surfaces that correspond to z=zmin
    """
    try:
        cubit.cmd('comment')
    except:
        try:
            import cubit
            cubit.init([""])
        except:
            print 'error importing cubit'
            import sys
            sys.exit()
    absorbing_surf=[]
    absorbing_surf_xmin=[]
    absorbing_surf_xmax=[]
    absorbing_surf_ymin=[]
    absorbing_surf_ymax=[]
    absorbing_surf_bottom=[]
    top_surf=[]


    list_vol=cubit.parse_cubit_list("volume","all")
    init_n_vol=len(list_vol)
    zmax_box=cubit.get_total_bounding_box("volume",list_vol)[7]
    zmin_box=cubit.get_total_bounding_box("volume",list_vol)[6] #it is the z_min of the box ... box= xmin,xmax,d,ymin,ymax,d,zmin...
    xmin_box=cubit.get_total_bounding_box("volume",list_vol)[0]
    xmax_box=cubit.get_total_bounding_box("volume",list_vol)[1]
    ymin_box=cubit.get_total_bounding_box("volume",list_vol)[3]
    ymax_box=cubit.get_total_bounding_box("volume",list_vol)[4]
    list_surf=cubit.parse_cubit_list("surface","all")
#    for k in list_surf:
#        center_point = cubit.get_center_point("surface", k)
#        if abs((center_point[0] - xmin_box)/xmin_box) <= 0.005:
#             absorbing_surf_xmin.append(k)
#             absorbing_surf.append(k)
#        elif abs((center_point[0] - xmax_box)/xmax_box) <= 0.005:
#             absorbing_surf_xmax.append(k)
#             absorbing_surf.append(k)
#        elif abs((center_point[1] - ymin_box)/ymin_box) <= 0.005:
#             absorbing_surf_ymin.append(k)
#             absorbing_surf.append(k)
#        elif abs((center_point[1] - ymax_box)/ymax_box) <= 0.005:
#             absorbing_surf_ymax.append(k)
#             absorbing_surf.append(k)
#        elif abs((center_point[2] - zmin_box)/zmin_box) <= 0.005:
#             absorbing_surf_bottom.append(k)
#             absorbing_surf.append(k)
#        else:
#            sbox=cubit.get_bounding_box('surface',k)
#            dz=abs((sbox[7] - zmax_box)/zmax_box)
#            normal=cubit.get_surface_normal(k)
#            zn=normal[2]
#            dn=abs(zn-1)
#            if dz <= 0.001 and dn < 0.2:
#                top_surf.append(k)

    #box lengths
    x_len = abs( xmax_box - xmin_box)
    y_len = abs( ymax_box - ymin_box)
    z_len = abs( zmax_box - zmin_box)

    print '##boundary box: '
    print '##  x length: ' + str(x_len)
    print '##  y length: ' + str(y_len)
    print '##  z length: ' + str(z_len)

    # tolerance parameters
    absorbing_surface_distance_tolerance=0.005
    topographic_surface_distance_tolerance=0.001
    topographic_surface_normal_tolerance=0.2

    for k in list_surf:
        center_point = cubit.get_center_point("surface", k)
        if abs((center_point[0] - xmin_box)/x_len) <= absorbing_surface_distance_tolerance:
             absorbing_surf_xmin.append(k)
             absorbing_surf.append(k)
        elif abs((center_point[0] - xmax_box)/x_len) <= absorbing_surface_distance_tolerance:
             absorbing_surf_xmax.append(k)
             absorbing_surf.append(k)
        elif abs((center_point[1] - ymin_box)/y_len) <= absorbing_surface_distance_tolerance:
             absorbing_surf_ymin.append(k)
             absorbing_surf.append(k)
        elif abs((center_point[1] - ymax_box)/y_len) <= absorbing_surface_distance_tolerance:
             absorbing_surf_ymax.append(k)
             absorbing_surf.append(k)
        elif abs((center_point[2] - zmin_box)/z_len) <= absorbing_surface_distance_tolerance:
             absorbing_surf_bottom.append(k)
             absorbing_surf.append(k)
        else:
            sbox=cubit.get_bounding_box('surface',k)
            dz=abs((sbox[7] - zmax_box)/z_len)
            normal=cubit.get_surface_normal(k)
            zn=normal[2]
            dn=abs(zn-1)
            if dz <= topographic_surface_distance_tolerance and dn < topographic_surface_normal_tolerance:
                top_surf.append(k)

    return absorbing_surf,absorbing_surf_xmin,absorbing_surf_xmax,absorbing_surf_ymin,absorbing_surf_ymax,absorbing_surf_bottom,top_surf
Exemple #27
0
def hor_distance(c1, c2):
    p1 = cubit.get_center_point("curve", c1)
    p2 = cubit.get_center_point("curve", c2)
    d = (p1[0] - p2[0])**2 + (p1[1] - p2[1])**2
    return d
Exemple #28
0
def get_v_h_list(vol_id_list, chktop=False):
    """
    return the lists of the cubit ID of vertical/horizontal
    surface and vertical/horizontal curves
    where v/h is defined by the distance of the z normal component from
    the axis direction the parameter cfg.tres is the threshold as
    for example if
    -tres <= normal[2] <= tres
    then the surface is vertical
    #
    usage: surf_or,surf_vertical,list_curve_or,
        list_curve_vertical,bottom,top = get_v_h_list(list_vol,chktop=False)
    """
    #
    tres = 0.3

    try:
        _ = len(vol_id_list)
    except:
        vol_id_list = [vol_id_list]
    surf_vertical = []
    surf_or = []
    list_curve_vertical = []
    list_curve_or = []
    #
    #
    for id_vol in vol_id_list:
        lsurf = cubit.get_relatives("volume", id_vol, "surface")
        for k in lsurf:
            normal = cubit.get_surface_normal(k)
            center_point = cubit.get_center_point("surface", k)
            if -1 * tres <= normal[2] <= tres:
                surf_vertical.append(k)
                lcurve = cubit.get_relatives("surface", k, "curve")
                list_curve_vertical = list_curve_vertical + list(lcurve)
            else:
                surf_or.append(k)
                lcurve = cubit.get_relatives("surface", k, "curve")
                list_curve_or = list_curve_or + list(lcurve)
    for x in list_curve_or:
        try:
            list_curve_vertical.remove(x)
        except:
            pass

    # find the top and the bottom surfaces
    k = surf_or[0]
    center_point = cubit.get_center_point("surface", k)[2]
    center_point_top = center_point
    center_point_bottom = center_point
    top = k
    bottom = k
    for k in surf_or[1:]:
        center_point = cubit.get_center_point("surface", k)[2]
        if center_point > center_point_top:
            center_point_top = center_point
            top = k
        elif center_point < center_point_bottom:
            center_point_bottom = center_point
            bottom = k
    # check that a top surface exists
    # it assume that the z coord of the center point
    if chktop:
        k = lsurf[0]
        vertical_centerpoint_top = cubit.get_center_point("surface", k)[2]
        vertical_zmax_box_top = cubit.get_bounding_box('surface', k)[7]
        normal_top = cubit.get_surface_normal(k)
        top = k
        for k in lsurf:
            vertical_centerpoint = cubit.get_center_point("surface", k)[2]
            vertical_zmax_box = cubit.get_bounding_box('surface', k)[7]
            normal = cubit.get_surface_normal(k)
            check = (vertical_centerpoint >= vertical_centerpoint_top) and (
                     vertical_zmax_box >= vertical_zmax_box_top) and (
                     normal >= normal_top)
            if check:
                top = k
        if top in surf_vertical:
            surf_vertical.remove(top)
        if top not in surf_or:
            surf_or.append(top)
    # if more than one surf is on the top, I get all the surfaces that are in
    # touch with top surface but not the vertical surfaces
    surftop = list(cubit.get_adjacent_surfaces(
        "surface", top))  # top is included in the list
    for s in surf_vertical:
        try:
            surftop.remove(s)
        except:
            pass
    top = surftop
    # check that all the surf are Horizontal or vertical
    surf_all = surf_vertical + surf_or
    if len(surf_all) != len(lsurf):
        print 'not all the surf are horizontal or vertical, check the normals'
        print 'list of surfaces: ', surf_all
        print 'list of vertical surface', surf_vertical
        print 'list of horizontal surface', surf_or

    bottom = [bottom]
    return surf_or, surf_vertical, list_curve_or, \
        list_curve_vertical, bottom, top
def define_absorbing_surf_nopar():
    """
    define the absorbing surfaces for a layered topological box where boundary surfaces are not parallel to the axis.
    it returns absorbing_surf,topo_surf
    where
    absorbing_surf is the list of all the absorbing boundary surf
    """
    try:
        cubit.cmd('comment')
    except:
        try:
            import cubit
            cubit.init([""])
        except:
            print 'error importing cubit'
            import sys
            sys.exit()
    from sets import Set

    def product(*args, **kwds):
        # product('ABCD', 'xy') --> Ax Ay Bx By Cx Cy Dx Dy
        # product(range(2), repeat=3) --> 000 001 010 011 100 101 110 111
        pools = map(tuple, args) * kwds.get('repeat', 1)
        result = [[]]
        for pool in pools:
            result = [x + [y] for x in result for y in pool]
        return result

    absorbing_surf = []
    absorbing_surf_xmin = []
    absorbing_surf_xmax = []
    absorbing_surf_ymin = []
    absorbing_surf_ymax = []
    absorbing_surf_bottom = []
    top_surf = []
    list_vol = cubit.parse_cubit_list("volume", "all")
    init_n_vol = len(list_vol)
    zmax_box = cubit.get_total_bounding_box("volume", list_vol)[7]
    zmin_box = cubit.get_total_bounding_box(
        "volume", list_vol
    )[6]  #it is the z_min of the box ... box= xmin,xmax,d,ymin,ymax,d,zmin...
    xmin_box = cubit.get_total_bounding_box("volume", list_vol)[0]
    xmax_box = cubit.get_total_bounding_box("volume", list_vol)[1]
    ymin_box = cubit.get_total_bounding_box("volume", list_vol)[3]
    ymax_box = cubit.get_total_bounding_box("volume", list_vol)[4]
    list_surf = cubit.parse_cubit_list("surface", "all")
    lv = []
    for k in list_surf:
        sbox = cubit.get_bounding_box('surface', k)
        dzmax = abs((sbox[7] - zmax_box) / zmax_box)
        dzmin = abs((sbox[6] - zmin_box) / zmin_box)
        normal = cubit.get_surface_normal(k)
        zn = normal[2]
        if dzmax <= 0.001 and zn > 0.7:
            top_surf.append(k)
            list_vertex = cubit.get_relatives('surface', k, 'vertex')
            for v in list_vertex:
                valence = cubit.get_valence(v)
                if valence <= 4:  #valence 3 is a corner, 4 is a vertex between 2 volumes, > 4 is a vertex not in the boundaries
                    lv.append(v)
        elif dzmin <= 0.001 and zn < -0.7:
            absorbing_surf.append(k)
    lp = []
    combs = product(lv, lv)
    for comb in combs:
        v1 = comb[0]
        v2 = comb[1]
        c = Set(cubit.get_relatives("vertex", v1, "curve")) & Set(
            cubit.get_relatives("vertex", v2, "curve"))
        if len(c) == 1:
            p = cubit.get_center_point("curve", list(c)[0])
            lp.append(p)
    for k in list_surf:
        center_point = cubit.get_center_point("surface", k)
        for p in lp:
            if abs((center_point[0] - p[0]) / p[0]) <= 0.005 and abs(
                (center_point[1] - p[1]) / p[1]) <= 0.005:
                absorbing_surf.append(k)
                break
    return absorbing_surf, top_surf
Exemple #30
0
            cubit.cmd('sideset 1 add surface %i' % isurf)  # N
        if np.abs(y0 - ymax) < 0.1:
            cubit.cmd('sideset 2 add surface %i' % isurf)  # S
    if c0[0] == 1 or c0[0] == -1:
        if np.abs(x0 - xmin) < 0.1:
            cubit.cmd('sideset 3 add surface %i' % isurf)  # E
        if np.abs(x0 - xmax) < 0.1:
            cubit.cmd('sideset 4 add surface %i' % isurf)  # W
    if c0[2] == 1 or c0[2] == -1:
        if np.abs(z0 - zmin) < 0.1:
            cubit.cmd('sideset 5 add surface %i' % isurf)  # lower
        if np.abs(z0 - zmax) < 0.1:
            isWell = False
            ovol = cubit.get_owning_volume('surface', isurf)
            if np.sum((np.array([0, 0]) -
                       np.array(cubit.get_center_point('volume', ovol)[0:2]))**
                      2)**0.5 < 0.1:
                if np.abs(cubit.get_surface_area(isurf) -
                          (math.pi * 1.8**2)) < 0.01:
                    print ovol
                    isWell = True
            if isWell:
                cubit.cmd('sideset 7 add surface %i' % (isurf))  # injection
            else:
                cubit.cmd('sideset 6 add surface %i' % isurf)  # upper

hex_ids = np.zeros([0, 3], dtype='int')
hex_xyzs = np.zeros([0, 3], dtype='float')
hex_types = np.zeros([0, 1], dtype='float')
iblock = 0
for ivol in range(1, cubit.get_volume_count() + 1):
Exemple #31
0
def mesh_layercake_regularmap(filename=None):

    import start as start
    mpiflag, iproc, numproc, mpi = start.start_mpi()
    from utilities import importgeometry, savemesh, get_v_h_list
    from utilities import cubit_command_check, get_cubit_version
    #
    # numpy = start.start_numpy()
    cfg = start.start_cfg(filename=filename)
    # from math import sqrt

    version_cubit = get_cubit_version()

    list_vol = cubit.parse_cubit_list("volume", "all")
    if len(list_vol) != 0:
        pass
    else:
        geometryfile = 'geometry_vol_' + str(iproc) + '.cub'
        importgeometry(geometryfile, iproc=iproc)

    command = 'composite create curve all'
    cubit.cmd(command)
    print('###"No valid composites can be created from the specified curves." \
          is NOT a critical ERROR.')
    #
    command = "compress all"
    cubit.cmd(command)
    list_vol = cubit.parse_cubit_list("volume", "all")
    nvol = len(list_vol)
    vol = []
    for id_vol in list_vol:
        p = cubit.get_center_point("volume", id_vol)
        vol.append(cubitvolume(id_vol, 1, p[2], 0))
    vol.sort(by_z)
    #
    for id_vol in range(0, nvol):
        vol[id_vol].intervalv = cfg.iv_interval[id_vol]
    #
    #
    surf_vertical = []
    surf_or = []
    # top_surface = 0
    # top_surface_add = ''
    # bottom_surface = 0
    # #
    # zmin_box = cubit.get_total_bounding_box("volume", list_vol)[6]
    # xmin_box = cubit.get_total_bounding_box("volume", list_vol)[0]
    # xmax_box = cubit.get_total_bounding_box("volume", list_vol)[1]
    # ymin_box = cubit.get_total_bounding_box("volume", list_vol)[3]
    # ymax_box = cubit.get_total_bounding_box("volume", list_vol)[4]
    #
    #
    # interval assignement
    surf_or, surf_vertical, list_curve_or, list_curve_vertical, \
        bottom, top = get_v_h_list(list_vol, chktop=cfg.chktop)
    print('vertical surfaces: ', surf_vertical)

    for k in surf_vertical:
        command = "surface " + str(k) + " scheme submap"
        cubit.cmd(command)
    for k in surf_or:
        command = "surface " + str(k) + " scheme " + cfg.or_mesh_scheme
        cubit.cmd(command)
    #
    ucurve, vcurve = get_uv_curve(list_curve_or)
    schemepave = False
    #
    ucurve_interval = {}
    for k in ucurve:
        length = cubit.get_curve_length(k)
        interval = int(2 * round(.5 * length / cfg.size, 0))
        ucurve_interval[k] = interval
        command = "curve " + str(k) + " interval " + str(interval)
        cubit.cmd(command)
        # cubit_error_stop(iproc,command,ner)
        command = "curve " + str(k) + " scheme equal"
        cubit.cmd(command)
        # cubit_error_stop(iproc,command,ner)
    if max(ucurve_interval.values()) != min(ucurve_interval.values()):
        schemepave = True
        print('mesh scheme is set to pave')
        for sk in surf_or:
            command = "surface " + str(sk) + " scheme pave"
            cubit.cmd(command)
    #
    vcurve_interval = {}
    for k in vcurve:
        length = cubit.get_curve_length(k)
        interval = int(2 * round(.5 * length / cfg.size, 0))
        vcurve_interval[k] = interval
        command = "curve " + str(k) + " interval " + str(interval)
        cubit.cmd(command)
        # cubit_error_stop(iproc,command,ner)
        command = "curve " + str(k) + " scheme equal"
        cubit.cmd(command)
        # cubit_error_stop(iproc,command,ner)

    if max(vcurve_interval.values()) != min(vcurve_interval.values()):
        print('mesh scheme is set to pave')
        schemepave = True
        for sk in surf_or:
            command = "surface " + str(sk) + " scheme pave"
            cubit.cmd(command)
    #
    for s in surf_vertical:
        lcurve = cubit.get_relatives("surface", s, "curve")
        interval_store = []
        for k in lcurve:
            interval_curve = cubit.get_mesh_intervals('curve', k)
            if k in list_curve_vertical:
                volume_id = cubit.get_owning_volume("curve", k)
                for idv in range(0, nvol):
                    if vol[idv].ID == volume_id:
                        int_v = vol[idv].intervalv
                command = "curve " + str(k) + " interval " + str(int_v)
                cubit.cmd(command)
                # cubit_error_stop(iproc,command,ner)
                command = "curve " + str(k) + " scheme equal"
                cubit.cmd(command)
                # cubit_error_stop(iproc,command,ner)
            else:
                interval_store.append((k, interval_curve))
            if len(interval_store) != 0:
                interval_min = min([iv[1] for iv in interval_store])
                str_interval = [str(iv[0]) for iv in interval_store]
                cmd = "curve " + ' '.join(str_interval) + \
                      " interval " + str(interval_min)
                cubit.cmd(cmd)
                command = "curve " + \
                    ' '.join(str(iv[0])
                             for iv in interval_store) + " scheme equal"
                cubit.cmd(command)
        command = "surface " + str(s) + " scheme submap"
        cubit.cmd(command)

    # meshing
    if cfg.or_mesh_scheme == 'pave' or schemepave:
        command = 'mesh surf ' + ' '.join(str(t) for t in top)
        status = cubit_command_check(iproc, command, stop=True)
        # cubit.cmd(command)
    elif cfg.or_mesh_scheme == 'map':
        command = 'mesh surf ' + ' '.join(str(t) for t in bottom)
        status = cubit_command_check(iproc, command, stop=True)
        # cubit.cmd(command)
    for id_volume in range(nvol - 1, -1, -1):
        command = "mesh vol " + str(vol[id_volume].ID)
        status = cubit_command_check(iproc, command, stop=False)
        if not status:
            for s in surf_vertical:
                command_surf = "mesh surf " + str(s)
                cubit.cmd(command_surf)
            if version_cubit < 16:
                command_set_meshvol = '''volume all redistribute nodes on
                volume all autosmooth target off
                volume all scheme Sweep Vector 0 0 -1
                volume all sweep smooth Auto
                '''
            else:
                command_set_meshvol = '''volume all redistribute nodes on
                volume all autosmooth target off
                volume all scheme Sweep Vector 0 0 -1
                '''
            status2 = cubit_command_check(
                iproc, command_set_meshvol, stop=False)
            status2 = cubit_command_check(iproc, command, stop=False)
            if not status2:
                _surf = cubit.get_relatives(
                    'volume', vol[id_volume].ID, 'surface')
                local_o_surf = [x for x in _surf if x in surf_or]
                cubit.cmd('volume ' + str(vol[id_volume].ID) +
                          ' redistribute nodes off')
                cubit.cmd('volume ' + str(vol[id_volume].ID) +
                          ' scheme Sweep  source surface ' +
                          ' '.join(str(x) for x in local_o_surf[0:-1]) +
                          ' target surface ' + str(local_o_surf[-1]))
                cubit.cmd('volume ' + str(vol[id_volume].ID) +
                          ' autosmooth_target off')
                status = cubit_command_check(iproc, command, stop=True)

    #
    # smoothing
    print(iproc, 'untangling...')
    cmd = "volume all smooth scheme untangle beta 0.02 cpu 10"
    cubit.cmd(cmd)
    cmd = "smooth volume all"
    cubit.cmd(cmd)

    if cfg.smoothing:
        print('smoothing .... ' + str(cfg.smoothing))
        cubitcommand = 'surf all smooth scheme laplacian '
        cubit.cmd(cubitcommand)
        cubitcommand = 'smooth surf all'
        cubit.cmd(cubitcommand)
        #
        cubitcommand = 'vol all smooth scheme laplacian '
        cubit.cmd(cubitcommand)
        cubitcommand = 'smooth vol all'
        cubit.cmd(cubitcommand)
    #
    #
    # vertical refinement
    # for nvol = 3
    ##
    # ___________________________ interface 4
    ##
    # vol 2
    # ___________________________ interface 3
    ##
    # vol 1
    # ___________________________ interface 2
    ##
    # vol 0
    # ___________________________ interface 1
    ##
    refinement(nvol, vol, filename=filename)
    #
    # top layer vertical coarsening
    print('coarsening top layer... ', cfg.coarsening_top_layer)
    if cfg.coarsening_top_layer:
        cubitcommand = 'del mesh vol ' + str(vol[-1].ID) + ' propagate'
        cubit.cmd(cubitcommand)
        s1 = set(list_curve_vertical)
        command = "group 'list_curve_tmp' add curve " + \
            "in vol " + str(vol[-1].ID)
        cubit.cmd(command)
        group = cubit.get_id_from_name("list_curve_tmp")
        list_curve_tmp = cubit.get_group_curves(group)
        command = "delete group " + str(group)
        cubit.cmd(command)
        s2 = set(list_curve_tmp)
        lc = list(s1 & s2)
        #
        cubitcommand = 'curve ' + \
            ' '.join(str(x) for x in lc) + ' interval ' + \
            str(cfg.actual_vertical_interval_top_layer)
        cubit.cmd(cubitcommand)
        cubitcommand = 'mesh vol ' + str(vol[-1].ID)
        cubit.cmd(cubitcommand)
    #
    n = cubit.get_sideset_id_list()
    if len(n) != 0:
        command = "del sideset all"
        cubit.cmd(command)
    n = cubit.get_block_id_list()
    if len(n) != 0:
        command = "del block all"
        cubit.cmd(command)
    #
    import boundary_definition
    entities = ['face']
    print(iproc, 'hex block definition...')
    boundary_definition.define_bc(entities, parallel=True,
                                  cpux=cfg.cpux, cpuy=cfg.cpuy,
                                  cpuxmin=0, cpuymin=0, optionsea=False)
    # save mesh

    print(iproc, 'untangling...')
    cmd = "volume all smooth scheme untangle beta 0.02 cpu 10"
    cubit.cmd(cmd)
    cmd = "smooth volume all"
    cubit.cmd(cmd)

    print(iproc, 'saving...')
    savemesh(mpiflag, iproc=iproc, filename=filename)