def train_cuml_regressor(data, targets, depth=25, trees=100): """Train cuML regression model""" model = cuRFR( max_depth=depth, n_estimators=trees, random_state=0 ) return model.fit(data, targets)
def _construct_rf( n_estimators, random_state, **kwargs ): return cuRFR( n_estimators=n_estimators, random_state=random_state, **kwargs)
def _func_build_rf( n, n_estimators, max_depth, handle, max_features, n_bins, split_algo, split_criterion, bootstrap, bootstrap_features, verbose, min_rows_per_node, rows_sample, max_leaves, n_streams, accuracy_metric, quantile_per_tree, r, ): return cuRFR( n_estimators=n_estimators, max_depth=max_depth, handle=handle, max_features=max_features, n_bins=n_bins, split_algo=split_algo, split_criterion=split_criterion, bootstrap=bootstrap, bootstrap_features=bootstrap_features, verbose=verbose, min_rows_per_node=min_rows_per_node, rows_sample=rows_sample, max_leaves=max_leaves, n_streams=n_streams, accuracy_metric=accuracy_metric, quantile_per_tree=quantile_per_tree, )
def _construct_rf(n_estimators, seed, **kwargs): return cuRFR(n_estimators=n_estimators, seed=seed, **kwargs)