def test_svm_predict_convert_dtype(train_dtype, test_dtype, classifier): X, y = make_classification(n_samples=50, random_state=0) X = X.astype(train_dtype) y = y.astype(train_dtype) X_train, X_test, y_train, y_test = train_test_split(X, y, train_size=0.8, random_state=0) if classifier: clf = cu_svm.SVC() else: clf = cu_svm.SVR() clf.fit(X_train, y_train) clf.predict(X_test.astype(test_dtype))
def test_svr_skl_cmp(params, dataset, n_rows, n_cols): """ Compare to Sklearn SVR """ if (dataset == 'Friedman' and n_cols < 5): # We need at least 5 feature columns for the Friedman dataset return X_train, X_test, y_train, y_test = make_regression_dataset(dataset, n_rows, n_cols) cuSVR = cu_svm.SVR(**params) cuSVR.fit(X_train, y_train) sklSVR = svm.SVR(**params) sklSVR.fit(X_train, y_train) compare_svr(cuSVR, sklSVR, X_test, y_test)
def test_svr_skl_cmp_weighted(): """ Compare to Sklearn SVR, use sample weights""" X, y = make_regression( n_samples=100, n_features=5, n_informative=2, n_targets=1, random_state=137, noise=10) sample_weights = 10*np.sin(np.linspace(0, 2*np.pi, len(y))) + 10.1 params = {'kernel': 'linear', 'C': 10, 'gamma': 1} cuSVR = cu_svm.SVR(**params) cuSVR.fit(X, y, sample_weights) sklSVR = svm.SVR(**params) sklSVR.fit(X, y, sample_weights) compare_svr(cuSVR, sklSVR, X, y)