Exemple #1
0
def test_output_type_context_mgr(global_output_type, context_type):
    dataset = get_small_dataset('numba')

    test_type = 'cupy' if global_output_type != 'cupy' else 'numpy'
    cuml.set_global_output_type(test_type)

    # use cuml context manager
    with cuml.using_output_type(context_type):
        dbscan_float = cuml.DBSCAN(eps=1.0, min_samples=1)
        dbscan_float.fit(dataset)

        res = dbscan_float.labels_

        if context_type == 'numba':
            assert is_cuda_array(res)
        else:
            assert isinstance(res, test_output_types[context_type])

    # use cuml again outside the context manager

    dbscan_float = cuml.DBSCAN(eps=1.0, min_samples=1)
    dbscan_float.fit(dataset)

    res = dbscan_float.labels_
    assert isinstance(res, test_output_types[test_type])
Exemple #2
0
def test_default_global_output_type(input_type):
    dataset = get_small_dataset(input_type)

    dbscan_float = cuml.DBSCAN(eps=1.0, min_samples=1)
    dbscan_float.fit(dataset)

    res = dbscan_float.labels_

    if input_type == 'numba':
        assert is_cuda_array(res)
    else:
        assert isinstance(res, test_output_types[input_type])
Exemple #3
0
def run_gpu(X, eps, min_samples):
    # Transfer inputs to GPU
    X = cp.array(X)

    # Begin computation
    t0 = time.time()
    mean = cp.mean(X, axis=0)
    std = cp.std(X, axis=0)
    cp.subtract(X, mean, out=X)
    cp.divide(X, std, out=X)
    print('Preprocessing:', time.time() - t0)

    # Run DBSCAN
    db = cuml.DBSCAN(eps=eps, min_samples=min_samples)
    db = db.fit(X)
    labels = db.labels_

    # Transfer outputs to CPU
    # labels = labels.to_pandas().to_numpy()
    labels = cp.asnumpy(labels)
    return labels
Exemple #4
0
solver_models = dict(CD=cuml.CD(), SGD=cuml.SGD(eta0=0.005))

cluster_models = dict(KMeans=cuml.KMeans())

decomposition_models = dict(
    PCA=cuml.PCA(),
    TruncatedSVD=cuml.TruncatedSVD(),
)

decomposition_models_xfail = dict(
    GaussianRandomProjection=cuml.GaussianRandomProjection(),
    SparseRandomProjection=cuml.SparseRandomProjection())

neighbor_models = dict(NearestNeighbors=cuml.NearestNeighbors())

dbscan_model = dict(DBSCAN=cuml.DBSCAN())

umap_model = dict(UMAP=cuml.UMAP())


def unit_param(*args, **kwargs):
    return pytest.param(*args, **kwargs, marks=pytest.mark.unit)


def quality_param(*args, **kwargs):
    return pytest.param(*args, **kwargs, marks=pytest.mark.quality)


def stress_param(*args, **kwargs):
    return pytest.param(*args, **kwargs, marks=pytest.mark.stress)
Exemple #5
0
cluster_models = {"KMeans": lambda: cuml.KMeans()}

decomposition_models = {
    "PCA": lambda: cuml.PCA(),
    "TruncatedSVD": lambda: cuml.TruncatedSVD(),
}

decomposition_models_xfail = {
    "GaussianRandomProjection": lambda: cuml.GaussianRandomProjection(),
    "SparseRandomProjection": lambda: cuml.SparseRandomProjection()
}

neighbor_models = {"NearestNeighbors": lambda: cuml.NearestNeighbors()}

dbscan_model = {"DBSCAN": lambda: cuml.DBSCAN()}

umap_model = {"UMAP": lambda: cuml.UMAP()}

rf_models = {
    "rfc": lambda: cuml.RandomForestClassifier(),
    "rfr": lambda: cuml.RandomForestRegressor()
}

all_models = {
    **regression_models,
    **solver_models,
    **cluster_models,
    **decomposition_models,
    **decomposition_models_xfail,
    **neighbor_models,
"""Load a dataset into GPU memory"""

import cudf
import io, requests

# download CSV file from github
url = "https://github.com/plotly/datasets/raw/master/tips.csv"
content = requests.get(url).content.decode('utf-8')

# read CSV from memory
tips_df = cudf.read_csv(io.StringIO(content))
tips_df['tip_percentage'] = tips_df['tip']/tips_df['total_bill']*100

# display average tip by dining party size
print(tips_df.groupby('size').tip_percentage.mean())

import cuml

# Create and populate a GPU DataFrame
df_float = cudf.DataFrame()
df_float['0'] = [1.0, 2.0, 5.0]
df_float['1'] = [4.0, 2.0, 1.0]
df_float['2'] = [4.0, 2.0, 1.0]

# Setup and fit clusters
dbscan_float = cuml.DBSCAN(eps=1.0, min_samples=1)
dbscan_float.fit(df_float)

print(dbscan_float.labels_)

Exemple #7
0
decomposition_models = {
    "PCA": lambda: cuml.PCA(),
    "TruncatedSVD": lambda: cuml.TruncatedSVD(),
}

decomposition_models_xfail = {
    "GaussianRandomProjection": lambda: cuml.GaussianRandomProjection(),
    "SparseRandomProjection": lambda: cuml.SparseRandomProjection()
}

neighbor_models = {
    "NearestNeighbors": lambda: cuml.NearestNeighbors()
}

dbscan_model = {
    "DBSCAN": lambda: cuml.DBSCAN()
}

umap_model = {
    "UMAP": lambda: cuml.UMAP()
}

rf_classification_model = {
    "rfc": lambda: cuml.RandomForestClassifier()
}

rf_regression_model = {
    "rfr": lambda: cuml.RandomForestRegressor()
}