Exemple #1
0
 def test_disk(self):
     """regression test of img-1194, footprint = [1]
     Test peak.peak_local_max when every point is a local maximum
     """
     image = cp.asarray(np.random.uniform(size=(10, 20)))
     footprint = cp.asarray([[1]])
     with expected_warnings(["indices argument is deprecated"]):
         result = peak.peak_local_max(
             image,
             labels=cp.ones((10, 20), dtype=int),
             footprint=footprint,
             min_distance=1,
             threshold_rel=0,
             threshold_abs=-1,
             indices=False,
             exclude_border=False,
         )
         assert cp.all(result)
         result = peak.peak_local_max(
             image,
             footprint=footprint,
             threshold_abs=-1,
             indices=False,
             exclude_border=False,
         )
         assert cp.all(result)
Exemple #2
0
def test_structural_similarity_grad(seed):
    N = 30
    # NOTE: This test is known to randomly fail on some systems (Mac OS X 10.6)
    #       And when testing tests in parallel. Therefore, we choose a few
    #       seeds that are known to work.
    #       The likely cause of this failure is that we are setting a hard
    #       threshold on the value of the gradient. Often the computed gradient
    #       is only slightly larger than what was measured.
    # X = cp.random.rand(N, N) * 255
    # Y = cp.random.rand(N, N) * 255
    rnd = np.random.RandomState(seed)
    X = cp.asarray(rnd.rand(N, N) * 255)
    Y = cp.asarray(rnd.rand(N, N) * 255)

    f = structural_similarity(X, Y, data_range=255)
    g = structural_similarity(X, Y, data_range=255, gradient=True)

    assert f < 0.05

    assert g[0] < 0.05
    assert cp.all(g[1] < 0.05)

    mssim, grad, s = structural_similarity(X,
                                           Y,
                                           data_range=255,
                                           gradient=True,
                                           full=True)
    assert cp.all(grad < 0.05)
Exemple #3
0
def spherical_cosmask(n,mask_radius, edge_width, origin=None):
    """mask = spherical_cosmask(n, mask_radius, edge_width, origin)
    """

    if type(n) is int:
        n = np.array([n])

    sz = np.array([1, 1, 1])
    sz[0:np.size(n)] = n[:]

    szl = -np.floor(sz/2)
    szh = szl + sz

    x,y,z = np.meshgrid( np.arange(szl[0],szh[0]), 
                         np.arange(szl[1],szh[1]), 
                         np.arange(szl[2],szh[2]), indexing='ij', sparse=True)

    r = np.sqrt(x*x + y*y + z*z)

    m = np.zeros(sz.tolist())

#    edgezone = np.where( (x*x + y*y + z*z >= mask_radius) & (x*x + y*y + z*z <= np.square(mask_radius + edge_width)))

    edgezone = np.all( [ (x*x + y*y + z*z >= mask_radius), (x*x + y*y + z*z <= np.square(mask_radius + edge_width))], axis=0)
    m[edgezone] = 0.5 + 0.5*np.cos( 2*np.pi*(r[edgezone] - mask_radius) / (2*edge_width))
    m[ np.all( [ (x*x + y*y + z*z <= mask_radius*mask_radius) ], axis=0 ) ] = 1

#    m[ np.where(x*x + y*y + z*z <= mask_radius*mask_radius)] = 1

    return m
Exemple #4
0
 def test_adjacent_and_different(self):
     image = cp.zeros((10, 20))
     labels = cp.zeros((10, 20), int)
     image[5, 5] = 1
     image[5, 6] = 0.5
     labels[5, 5:6] = 1
     expected = image == 1
     with expected_warnings(["indices argument is deprecated"]):
         result = peak.peak_local_max(
             image,
             labels=labels,
             footprint=cp.ones((3, 3), bool),
             min_distance=1,
             threshold_rel=0,
             indices=False,
             exclude_border=False,
         )
         assert cp.all(result == expected)
         result = peak.peak_local_max(
             image,
             labels=labels,
             min_distance=1,
             threshold_rel=0,
             indices=False,
             exclude_border=False,
         )
         assert cp.all(result == expected)
Exemple #5
0
 def test_dropout_forward(self):
     _, y = self.states.forward(
         cupy.cudnn.get_handle(), self.x, self.ratio)
     if self.ratio == 0:
         self.assertTrue(cupy.all(self.x == y))
     else:
         self.assertTrue(cupy.all(self.x != y))
Exemple #6
0
def test_sobel_h_horizontal():
    """Horizontal Sobel on an edge should be a horizontal line."""
    i, j = cp.mgrid[-5:6, -5:6]
    image = (i >= 0).astype(float)
    result = filters.sobel_h(image)
    # Check if result match transform direction
    assert cp.all(result[i == 0] == 1)
    assert cp.all(result[cp.abs(i) > 1] == 0)
Exemple #7
0
def test_scharr_v_vertical():
    """Vertical Scharr on an edge should be a vertical line."""
    i, j = cp.mgrid[-5:6, -5:6]
    image = (j >= 0).astype(float)
    result = filters.scharr_v(image)
    # Check if result match transform direction
    assert cp.all(result[j == 0] == 1)
    assert cp.all(result[cp.abs(j) > 1] == 0)
Exemple #8
0
def test_arraymap_update():
    in_values = cp.unique(cp.random.randint(0, 200, size=5))
    out_values = cp.random.random(len(in_values))
    m = ArrayMap(in_values, out_values)
    image = cp.random.randint(1, len(m), size=(512, 512))
    assert cp.all(m[image] < 1)  # missing values map to 0.
    m[1:] += 1
    assert cp.all(m[image] >= 1)
        def predict_df(x):
            # column major array
            inplace_predt = booster.inplace_predict(x.values)
            d = xgb.DMatrix(x)
            copied_predt = cp.array(booster.predict(d))
            assert cp.all(copied_predt == inplace_predt)

            inplace_predt = booster.inplace_predict(x)
            return cp.all(copied_predt == inplace_predt)
Exemple #10
0
def test_arraymap_bool_index():
    in_values = cp.unique(cp.random.randint(0, 200, size=5))
    out_values = cp.random.random(len(in_values))
    m = ArrayMap(in_values, out_values)
    image = cp.random.randint(1, len(in_values), size=(512, 512))
    assert cp.all(m[image] < 1)  # missing values map to 0.
    positive = cp.ones(len(m), dtype=bool)
    positive[0] = False
    m[positive] += 1
    assert cp.all(m[image] >= 1)
Exemple #11
0
    def test_read_write(self, tmpdir):
        cd = self.init_cuda_dict()
        filename = os.path.join(tmpdir, 'test_cd.npz')
        CudaDict.save(filename, cd)

        new_cd = CudaDict.load(filename, tpb=cd.tpb)
        assert len(new_cd) == len(cd)
        assert cp.all(cd.contains(new_cd.keys()))
        assert cp.all(new_cd.contains(cd.keys()))
        assert cp.all(cd[new_cd.keys()] == new_cd.values())
        assert cp.all(new_cd[cd.keys()] == cd.values())
Exemple #12
0
def test_output(output_type, dtype, order, shape):
    inp = create_input('numpy', dtype, shape, order)
    ary = CumlArray(inp)

    if dtype in unsupported_cudf_dtypes and \
            output_type in ['series', 'dataframe', 'cudf']:
        with pytest.raises(ValueError):
            res = ary.to_output(output_type)
    elif shape in [(10, 5), (1, 10)] and output_type == 'series':
        with pytest.raises(ValueError):
            res = ary.to_output(output_type)
    else:
        res = ary.to_output(output_type)

        # using correct numba ndarray check
        if output_type == 'numba':
            assert cuda.devicearray.is_cuda_ndarray(res)
        elif output_type == 'cudf':
            if shape in [(10, 5), (1, 10)]:
                assert isinstance(res, cudf.DataFrame)
            else:
                assert isinstance(res, cudf.Series)
        else:
            assert isinstance(res, test_output_types[output_type])

        if output_type == 'numpy':
            assert np.all(inp == ary.to_output('numpy'))

        elif output_type == 'cupy':
            assert cp.all(cp.asarray(inp) == ary.to_output('cupy'))

        elif output_type == 'numba':
            assert cp.all(cp.asarray(cuda.to_device(inp)) == cp.asarray(res))

        elif output_type == 'series':
            comp = cudf.Series(np.ravel(inp)) == res
            assert np.all(comp.to_array())

        elif output_type == 'dataframe':
            mat = cuda.to_device(inp)
            if len(mat.shape) == 1:
                mat = mat.reshape(mat.shape[0], 1)
            comp = cudf.DataFrame.from_gpu_matrix(mat)
            comp = comp == res
            assert np.all(comp.as_gpu_matrix().copy_to_host())

        # check for e2e cartesian product:
        if output_type not in ['dataframe', 'cudf']:
            res2 = CumlArray(res)
            res2 = res2.to_output('numpy')
            if output_type == 'series' and shape == (10, 1):
                assert np.all(inp.reshape((1, 10)) == res2)
            else:
                assert np.all(inp == res2)
Exemple #13
0
    def test_init(self):
        cd = self.init_cuda_dict()
        cd.bpg = ceil(len(self.test_keys) / cd.tpb)
        assert cp.all(cd.contains(self.test_keys))
        assert cp.all(cd[self.test_keys] == self.test_values)

        cd.bpg = ceil(len(self.test_lookup_keys_avail) / cd.tpb)
        assert cp.all(cd.contains(self.test_lookup_keys_avail))
        assert cp.all(cd[self.test_lookup_keys_avail] == self.test_lookup_values_avail)

        cd.bpg = ceil(len(self.test_lookup_keys_unavail) / cd.tpb)
        assert cp.all(cd[self.test_lookup_keys_unavail] == self.test_default[0])
        assert not cp.any(cd.contains(self.test_lookup_keys_unavail))
Exemple #14
0
def test_generate_random_first_generation_returns_individuals_with_values_that_are_either_0_or_1(
):
    # Given
    number_of_individuals = 100
    number_of_literals = 40

    # When
    population = generate_random_first_generation(number_of_individuals,
                                                  number_of_literals)

    # Then
    assert cupy.all(population <= 1)
    assert cupy.all(population >= 0)
Exemple #15
0
    def test_dropout_seed(self):
        # initialize Dropoutstates with the same seed
        states2 = cudnn.DropoutStates(None, self.seed)

        rspace, y = self.states.forward(None, self.x, self.ratio)
        rspace2, y2 = states2.forward(None, self.x, self.ratio)
        # forward results must be the same
        self.assertTrue(cupy.all(y == y2))

        gx = self.states.backward(None, self.gy, self.ratio, rspace)
        gx2 = states2.backward(None, self.gy, self.ratio, rspace2)
        # backward results must be the same
        self.assertTrue(cupy.all(gx == gx2))
Exemple #16
0
    def test_device_gpu(self):
        import cupy as cp

        mv = MedicalVolume(np.ones((10, 20, 30)), self._AFFINE)
        mv_gpu = mv.to(Device(0))

        assert mv_gpu.device == Device(0)
        assert isinstance(mv_gpu.volume, cp.ndarray)
        assert isinstance(mv_gpu.affine, np.ndarray)

        assert mv_gpu.is_same_dimensions(mv)

        assert cp.all((mv_gpu + 1).volume == 2)
        assert cp.all((mv_gpu - 1).volume == 0)
        assert cp.all((mv_gpu * 2).volume == 2)
        assert cp.all((mv_gpu / 2).volume == 0.5)
        assert cp.all((mv_gpu > 0).volume)
        assert cp.all((mv_gpu >= 0).volume)
        assert cp.all((mv_gpu < 2).volume)
        assert cp.all((mv_gpu <= 2).volume)

        ornt = tuple(x[::-1] for x in mv_gpu.orientation[::-1])
        mv2 = mv_gpu.reformat(ornt)
        assert mv2.orientation == ornt

        mv_cpu = mv_gpu.cpu()
        assert mv_cpu.device == Device(-1)
        assert mv_cpu.is_identical(mv)

        with self.assertRaises(RuntimeError):
            mv_gpu.save_volume(
                os.path.join(self._TEMP_PATH, "test_device.nii.gz"))
Exemple #17
0
def fit_custom(X, n_clusters, max_iter):
    assert X.ndim == 2

    n_samples = len(X)

    pred = cupy.zeros(n_samples)

    initial_indexes = cupy.random.choice(n_samples, n_clusters, replace=False)
    centers = X[initial_indexes]

    for _ in range(max_iter):
        distances = var_kernel(X[:, None, 0], X[:, None, 1],
                               centers[None, :, 1], centers[None, :, 0])
        new_pred = cupy.argmin(distances, axis=1)
        if cupy.all(new_pred == pred):
            break
        pred = new_pred

        i = cupy.arange(n_clusters)
        mask = pred == i[:, None]
        sums = sum_kernel(X, mask[:, :, None], axis=1)
        counts = count_kernel(mask, axis=1).reshape((n_clusters, 1))
        centers = sums / counts

    return centers, pred
Exemple #18
0
def test_no_motion_3d():
    rnd = np.random.RandomState(0)
    img = cp.array(rnd.normal(size=(64, 64, 64)))

    flow = optical_flow_tvl1(img, img)

    assert cp.all(flow == 0)
Exemple #19
0
def test_fit():
    ld = Loda(n_random_cuts=10, n_bins=None)
    x = cupy.random.randint(0, 100, size=(200, 10))
    ld.fit(x)
    assert ld._histograms is not None
    assert isinstance(ld._histograms, cupy.ndarray)
    assert cupy.all(ld._histograms > 0)
Exemple #20
0
def test_deepcopy(input_type):
    if input_type == 'series':
        inp = create_input(input_type, np.float32, (10, 1), 'C')
    else:
        inp = create_input(input_type, np.float32, (10, 5), 'F')
    ary = CumlArray(data=inp)
    b = deepcopy(ary)
    if input_type == 'numpy':
        assert np.all(inp == b.to_output('numpy'))
    elif input_type == 'series':
        assert np.all(inp == b.to_output('series'))
    else:
        assert cp.all(inp == cp.asarray(b))

    assert ary.ptr != b.ptr

    assert ary.__cuda_array_interface__['shape'] == \
        b.__cuda_array_interface__['shape']
    assert ary.__cuda_array_interface__['strides'] == \
        b.__cuda_array_interface__['strides']
    assert ary.__cuda_array_interface__['typestr'] == \
        b.__cuda_array_interface__['typestr']

    if input_type != 'series':
        # skipping one dimensional ary order test
        assert ary.order == b.order
Exemple #21
0
def test_serialize(input_type):
    if input_type == 'series':
        inp = create_input(input_type, np.float32, (10, 1), 'C')
    else:
        inp = create_input(input_type, np.float32, (10, 5), 'F')
    ary = CumlArray(data=inp)
    header, frames = ary.serialize()
    ary2 = CumlArray.deserialize(header, frames)

    assert pickle.loads(header['type-serialized']) is CumlArray
    assert all(isinstance(f, Buffer) for f in frames)

    if input_type == 'numpy':
        assert np.all(inp == ary2.to_output('numpy'))
    elif input_type == 'series':
        assert np.all(inp == ary2.to_output('series'))
    else:
        assert cp.all(inp == cp.asarray(ary2))

    assert ary.__cuda_array_interface__['shape'] == \
        ary2.__cuda_array_interface__['shape']
    assert ary.__cuda_array_interface__['strides'] == \
        ary2.__cuda_array_interface__['strides']
    assert ary.__cuda_array_interface__['typestr'] == \
        ary2.__cuda_array_interface__['typestr']

    if input_type != 'series':
        # skipping one dimensional ary order test
        assert ary.order == ary2.order
Exemple #22
0
def test_array_init_bad(input_type, dtype, shape, order):
    """
    This test ensures that we assert on incorrect combinations of arguments
    when creating CumlArray
    """
    if input_type == 'series':
        if dtype == np.float16:
            pytest.skip("Skipping due to cuDF issue #9065")
        inp = create_input(input_type, dtype, shape, 'C')
    else:
        inp = create_input(input_type, dtype, shape, order)

    # Ensure the array is creatable
    cuml_ary = CumlArray(inp)

    with pytest.raises(AssertionError):
        CumlArray(inp, dtype=cuml_ary.dtype)

    with pytest.raises(AssertionError):
        CumlArray(inp, shape=cuml_ary.shape)

    with pytest.raises(AssertionError):
        CumlArray(inp,
                  order=_strides_to_order(cuml_ary.strides, cuml_ary.dtype))

    assert cp.all(cp.asarray(inp) == cp.asarray(cuml_ary))
Exemple #23
0
def test_sobel_vertical():
    """Sobel on a vertical edge should be a vertical line."""
    i, j = cp.mgrid[-5:6, -5:6]
    image = (j >= 0).astype(float)
    result = filters.sobel(image) * np.sqrt(2)
    assert_allclose(result[j == 0], 1)
    assert cp.all(result[cp.abs(j) > 1] == 0)
Exemple #24
0
def test_no_motion_3d():
    rnd = cp.random.RandomState(0)
    img = rnd.normal(size=(128, 128, 128))

    flow = optical_flow_tvl1(img, img)

    assert cp.all(flow == 0)
Exemple #25
0
 def test_01_01_circle(self):
     """Test that the Canny filter finds the outlines of a circle"""
     i, j = cp.mgrid[-200:200, -200:200].astype(float) / 200
     c = cp.abs(cp.sqrt(i * i + j * j) - 0.5) < 0.02
     result = feature.canny(c.astype(float), 4, 0, 0,
                            cp.ones(c.shape, bool))
     #
     # erode and dilate the circle to get rings that should contain the
     # outlines
     #
     # TODO: grlee77: only implemented brute_force=True, so added that to
     #                these tests
     cd = binary_dilation(c, iterations=3, brute_force=True)
     ce = binary_erosion(c, iterations=3, brute_force=True)
     cde = cp.logical_and(cd, cp.logical_not(ce))
     self.assertTrue(cp.all(cde[result]))
     #
     # The circle has a radius of 100. There are two rings here, one
     # for the inside edge and one for the outside. So that's
     # 100 * 2 * 2 * 3 for those places where pi is still 3.
     # The edge contains both pixels if there's a tie, so we
     # bump the count a little.
     point_count = cp.sum(result)
     self.assertTrue(point_count > 1200)
     self.assertTrue(point_count < 1600)
Exemple #26
0
def test_downsize_anti_aliasing():
    x = cp.zeros((10, 10), dtype=np.double)
    x[2, 2] = 1
    scaled = resize(x, (5, 5), order=1, anti_aliasing=True, mode="constant")
    assert_array_equal(scaled.shape, (5, 5))
    assert cp.all(scaled[:3, :3] > 0)
    assert_array_equal(scaled[3:, :].sum(), 0)
    assert_array_equal(scaled[:, 3:].sum(), 0)

    sigma = 0.125
    out_size = (5, 5)
    resize(
        x,
        out_size,
        order=1,
        mode="constant",
        anti_aliasing=True,
        anti_aliasing_sigma=sigma,
    )
    resize(
        x,
        out_size,
        order=1,
        mode="edge",
        anti_aliasing=True,
        anti_aliasing_sigma=sigma,
    )
    resize(
        x,
        out_size,
        order=1,
        mode="symmetric",
        anti_aliasing=True,
        anti_aliasing_sigma=sigma,
    )
    resize(
        x,
        out_size,
        order=1,
        mode="reflect",
        anti_aliasing=True,
        anti_aliasing_sigma=sigma,
    )
    resize(
        x,
        out_size,
        order=1,
        mode="wrap",
        anti_aliasing=True,
        anti_aliasing_sigma=sigma,
    )
    with pytest.raises(ValueError):  # Unknown mode, or cannot translate mode
        resize(
            x,
            out_size,
            order=1,
            mode="non-existent",
            anti_aliasing=True,
            anti_aliasing_sigma=sigma,
        )
Exemple #27
0
def test_make_regression(n_samples, n_features, n_informative, n_targets, bias,
                         effective_rank, tail_strength, noise, shuffle, coef,
                         random_state, n_parts, cluster):
    c = Client(cluster)
    try:
        from cuml.dask.datasets import make_regression

        result = make_regression(n_samples=n_samples,
                                 n_features=n_features,
                                 n_informative=n_informative,
                                 n_targets=n_targets,
                                 bias=bias,
                                 effective_rank=effective_rank,
                                 noise=noise,
                                 shuffle=shuffle,
                                 coef=coef,
                                 random_state=random_state,
                                 n_parts=n_parts)

        if coef:
            out, values, coefs = result
        else:
            out, values = result

        assert out.shape == (n_samples, n_features), "out shape mismatch"

        if n_targets > 1:
            assert values.shape == (n_samples, n_targets), \
                   "values shape mismatch"
        else:
            assert values.shape == (n_samples, ), "values shape mismatch"

        assert len(out.chunks[0]) == n_parts
        assert len(out.chunks[1]) == 1

        if coef:
            if n_targets > 1:
                assert coefs.shape == (n_features, n_targets), \
                       "coefs shape mismatch"
                assert len(coefs.chunks[1]) == 1
            else:
                assert coefs.shape == (n_features, ), "coefs shape mismatch"
                assert len(coefs.chunks[0]) == 1

            test1 = da.all(da.sum(coefs != 0.0, axis=0) == n_informative)

            std_test2 = da.std(values - (da.dot(out, coefs) + bias), axis=0)

            test1, std_test2 = da.compute(test1, std_test2)

            diff = cp.abs(1.0 - std_test2)
            test2 = cp.all(diff < 1.5 * 10**(-1.))

            assert test1, \
                "Unexpected number of informative features"

            assert test2, "Unexpectedly incongruent outputs"

    finally:
        c.close()
Exemple #28
0
def test_farid_vertical():
    """Farid on a vertical edge should be a vertical line."""
    i, j = cp.mgrid[-5:6, -5:6]
    image = (j >= 0).astype(float)
    result = filters.farid(image) * np.sqrt(2)
    assert cp.all(result[j == 0] == result[j == 0][0])
    assert_allclose(result[cp.abs(j) > 2], 0, atol=1e-10)
Exemple #29
0
def remove_duplicate(params, grads):
    '''
    パラメータ配列中の重複する重みをひとつに集約し、
    その重みに対応する勾配を加算する
    '''
    params, grads = params[:], grads[:]  # copy list

    while True:
        find_flg = False
        L = len(params)

        for i in range(0, L - 1):
            for j in range(i + 1, L):
                # 重みを共有する場合
                if params[i] is params[j]:
                    grads[i] += grads[j]  # 勾配の加算
                    find_flg = True
                    params.pop(j)
                    grads.pop(j)
                # 転置行列として重みを共有する場合(weight tying)
                elif params[i].ndim == 2 and params[j].ndim == 2 and \
                     params[i].T.shape == params[j].shape and cp.all(params[i].T == params[j]):
                    grads[i] += grads[j].T
                    find_flg = True
                    params.pop(j)
                    grads.pop(j)

                if find_flg: break
            if find_flg: break

        if not find_flg: break

    return params, grads
Exemple #30
0
def check_finite(array, force_all_finite=True):
    """Checks that the input is finite if necessary

    Parameters
    ----------
    array : object
        Input object to check / convert.
    force_all_finite : boolean or 'allow-nan', (default=True)
        Whether to raise an error on np.inf, np.nan, pd.NA in array. The
        possibilities are:
        - True: Force all values of array to be finite.
        - False: accepts np.inf, np.nan, pd.NA in array.
        - 'allow-nan': accepts only np.nan and pd.NA values in array. Values
          cannot be infinite.
           ``force_all_finite`` accepts the string ``'allow-nan'``.

    Returns
    -------
    None or raise error
    """
    if force_all_finite is True:
        if not cp.all(cp.isfinite(array)):
            raise ValueError("Non-finite value encountered in array")
    elif force_all_finite == 'allow-nan':
        if cp.any(cp.isinf(array)):
            raise ValueError("Non-finite value encountered in array")