Exemple #1
0
def spilu(A, drop_tol=None, fill_factor=None, drop_rule=None,
          permc_spec=None, diag_pivot_thresh=None, relax=None,
          panel_size=None, options={}):
    """Computes the incomplete LU decomposition of a sparse square matrix.

    Args:
        A (cupyx.scipy.sparse.spmatrix): Sparse matrix to factorize.
        drop_tol (float): (For further augments, see
            :func:`scipy.sparse.linalg.spilu`)
        fill_factor (float):
        drop_rule (str):
        permc_spec (str):
        diag_pivot_thresh (float):
        relax (int):
        panel_size (int):
        options (dict):

    Returns:
        cupyx.scipy.sparse.linalg.SuperLU:
            Object which has a ``solve`` method.

    Note:
        This function computes incomplete LU decomposition of a sparse matrix
        on the CPU using `scipy.sparse.linalg.spilu` (unless you set
        ``fill_factor`` to ``1``). Therefore, incomplete LU decomposition is
        not accelerated on the GPU. On the other hand, the computation of
        solving linear equations using the ``solve`` method, which this
        function returns, is performed on the GPU.

        If you set ``fill_factor`` to ``1``, this function computes incomplete
        LU decomposition on the GPU, but without fill-in or pivoting.

    .. seealso:: :func:`scipy.sparse.linalg.spilu`
    """
    if not scipy_available:
        raise RuntimeError('scipy is not available')
    if not sparse.isspmatrix(A):
        raise TypeError('A must be cupyx.scipy.sparse.spmatrix')
    if A.shape[0] != A.shape[1]:
        raise ValueError('A must be a square matrix (A.shape: {})'
                         .format(A.shape))
    if A.dtype.char not in 'fdFD':
        raise TypeError('Invalid dtype (actual: {})'.format(A.dtype))

    if fill_factor == 1:
        # Computes ILU(0) on the GPU using cuSparse functions
        if not sparse.isspmatrix_csr(A):
            a = A.tocsr()
        else:
            a = A.copy()
        cusparse.csrilu02(a)
        return CusparseLU(a)

    a = A.get().tocsc()
    a_inv = scipy.sparse.linalg.spilu(
        a, fill_factor=fill_factor, drop_tol=drop_tol, drop_rule=drop_rule,
        permc_spec=permc_spec, diag_pivot_thresh=diag_pivot_thresh,
        relax=relax, panel_size=panel_size, options=options)
    return SuperLU(a_inv)
Exemple #2
0
def aslinearoperator(A):
    """Return `A` as a LinearOperator.

    Args:
        A (array-like):
            The input array to be converted to a `LinearOperator` object.
            It may be any of the following types:

               * :class:`cupy.ndarray`
               * sparse matrix (e.g. ``csr_matrix``, ``coo_matrix``, etc.)
               * :class:`cupyx.scipy.sparse.linalg.LinearOperator`
               * object with ``.shape`` and ``.matvec`` attributes

    Returns:
        cupyx.scipy.sparse.linalg.LinearOperator: `LinearOperator` object

    .. seealso:: :func:`scipy.sparse.aslinearoperator``
    """
    if isinstance(A, LinearOperator):
        return A

    elif isinstance(A, cupy.ndarray):
        if A.ndim > 2:
            raise ValueError('array must have ndim <= 2')
        A = cupy.atleast_2d(A)
        return MatrixLinearOperator(A)

    elif sparse.isspmatrix(A):
        return MatrixLinearOperator(A)

    else:
        if hasattr(A, 'shape') and hasattr(A, 'matvec'):
            rmatvec = None
            rmatmat = None
            dtype = None

            if hasattr(A, 'rmatvec'):
                rmatvec = A.rmatvec
            if hasattr(A, 'rmatmat'):
                rmatmat = A.rmatmat
            if hasattr(A, 'dtype'):
                dtype = A.dtype
            return LinearOperator(A.shape,
                                  A.matvec,
                                  rmatvec=rmatvec,
                                  rmatmat=rmatmat,
                                  dtype=dtype)

        else:
            raise TypeError('type not understood')
Exemple #3
0
def splu(A,
         permc_spec=None,
         diag_pivot_thresh=None,
         relax=None,
         panel_size=None,
         options={}):
    """Computes the LU decomposition of a sparse square matrix.

    Args:
        A (cupyx.scipy.sparse.spmatrix): Sparse matrix to factorize.
        permc_spec (str): (For further augments, see
            :func:`scipy.sparse.linalg.splu`)
        diag_pivot_thresh (float):
        relax (int):
        panel_size (int):
        options (dict):

    Returns:
        cupyx.scipy.sparse.linalg.SuperLU:
            Object which has a ``solve`` method.

    Note:
        This function LU-decomposes a sparse matrix on the CPU using
        `scipy.sparse.linalg.splu`. Therefore, LU decomposition is not
        accelerated on the GPU. On the other hand, the computation of solving
        linear equations using the ``solve`` method, which this function
        returns, is performed on the GPU.

    .. seealso:: :func:`scipy.sparse.linalg.splu`
    """
    if not scipy_available:
        raise RuntimeError('scipy is not available')
    if not sparse.isspmatrix(A):
        raise TypeError('A must be cupyx.scipy.sparse.spmatrix')
    if A.shape[0] != A.shape[1]:
        raise ValueError('A must be a square matrix (A.shape: {})'.format(
            A.shape))
    if A.dtype.char not in 'fdFD':
        raise TypeError('Invalid dtype (actual: {})'.format(A.dtype))

    a = A.get().tocsc()
    a_inv = scipy.sparse.linalg.splu(a,
                                     permc_spec=permc_spec,
                                     diag_pivot_thresh=diag_pivot_thresh,
                                     relax=relax,
                                     panel_size=panel_size,
                                     options=options)
    return SuperLU(a_inv)
Exemple #4
0
    def _run(self, maj, min=None, flip_for_csc=True, compare_dense=False):

        a = sparse.random(self.n_rows,
                          self.n_cols,
                          format=self.format,
                          density=self.density)

        if self.format == 'csc' and flip_for_csc:
            tmp = maj
            maj = min
            min = tmp

        # None is not valid for major when minor is not None
        maj = slice(None) if maj is None else maj

        # sparse.random doesn't support complex types
        # so we need to cast
        a = a.astype(self.dtype)

        expected = a.get()

        maj_h = maj.get() if isinstance(maj, cupy.ndarray) else maj
        min_h = min.get() if isinstance(min, cupy.ndarray) else min

        if min is not None:

            actual = a[maj, min]
            expected = expected[maj_h, min_h]
        else:
            actual = a[maj]
            expected = expected[maj_h]

        if compare_dense:
            actual = actual.toarray()
            expected = expected.toarray()

        if sparse.isspmatrix(actual):
            actual.sort_indices()
            expected.sort_indices()

            testing.assert_array_equal(actual.indptr, expected.indptr)
            testing.assert_array_equal(actual.indices, expected.indices)
            testing.assert_array_equal(actual.data, expected.data)
            actual = actual.toarray()
            expected = expected.toarray()

        testing.assert_array_equal(actual, expected)
Exemple #5
0
def spsolve(A, b):
    """Solves a sparse linear system ``A x = b``

    Args:
        A (cupyx.scipy.sparse.spmatrix):
            Sparse matrix with dimension ``(M, M)``.
        b (cupy.ndarray):
            Dense vector or matrix with dimension ``(M)`` or ``(M, 1)``.

    Returns:
        cupy.ndarray:
            Solution to the system ``A x = b``.
    """
    if not cupy.cusolver.check_availability('csrlsvqr'):
        raise NotImplementedError
    if not sparse.isspmatrix(A):
        raise TypeError('A must be cupyx.scipy.sparse.spmatrix')
    if not isinstance(b, cupy.ndarray):
        raise TypeError('b must be cupy.ndarray')
    if A.shape[0] != A.shape[1]:
        raise ValueError('A must be a square matrix (A.shape: {})'.format(
            A.shape))
    if not (b.ndim == 1 or (b.ndim == 2 and b.shape[1] == 1)):
        raise ValueError('Invalid b.shape (b.shape: {})'.format(b.shape))
    if A.shape[0] != b.shape[0]:
        raise ValueError(
            'matrix dimension mismatch (A.shape: {}, b.shape: {})'.format(
                A.shape, b.shape))

    if not sparse.isspmatrix_csr(A):
        warnings.warn('CSR format is required. Converting to CSR format.',
                      sparse.SparseEfficiencyWarning)
        A = A.tocsr()
    A.sum_duplicates()
    b = b.astype(A.dtype, copy=False).ravel()

    return cupy.cusolver.csrlsvqr(A, b)
Exemple #6
0
def spsolve_triangular(A, b, lower=True, overwrite_A=False, overwrite_b=False,
                       unit_diagonal=False):
    """Solves a sparse triangular system ``A x = b``.

    Args:
        A (cupyx.scipy.sparse.spmatrix):
            Sparse matrix with dimension ``(M, M)``.
        b (cupy.ndarray):
            Dense vector or matrix with dimension ``(M)`` or ``(M, K)``.
        lower (bool):
            Whether ``A`` is a lower or upper trinagular matrix.
            If True, it is lower triangular, otherwise, upper triangular.
        overwrite_A (bool):
            (not supported)
        overwrite_b (bool):
            Allows overwriting data in ``b``.
        unit_diagonal (bool):
            If True, diagonal elements of ``A`` are assumed to be 1 and will
            not be referencec.

    Returns:
        cupy.ndarray:
            Solution to the system ``A x = b``. The shape is the same as ``b``.
    """
    if not cusparse.check_availability('csrsm2'):
        raise NotImplementedError

    if not sparse.isspmatrix(A):
        raise TypeError('A must be cupyx.scipy.sparse.spmatrix')
    if not isinstance(b, cupy.ndarray):
        raise TypeError('b must be cupy.ndarray')
    if A.shape[0] != A.shape[1]:
        raise ValueError('A must be a square matrix (A.shape: {})'.
                         format(A.shape))
    if b.ndim not in [1, 2]:
        raise ValueError('b must be 1D or 2D array (b.shape: {})'.
                         format(b.shape))
    if A.shape[0] != b.shape[0]:
        raise ValueError('The size of dimensions of A must be equal to the '
                         'size of the first dimension of b '
                         '(A.shape: {}, b.shape: {})'.format(A.shape, b.shape))
    if A.dtype.char not in 'fdFD':
        raise TypeError('unsupported dtype (actual: {})'.format(A.dtype))

    if not (sparse.isspmatrix_csr(A) or sparse.isspmatrix_csc(A)):
        warnings.warn('CSR or CSC format is required. Converting to CSR '
                      'format.', sparse.SparseEfficiencyWarning)
        A = A.tocsr()
    A.sum_duplicates()

    if (overwrite_b and A.dtype == b.dtype and
            (b._c_contiguous or b._f_contiguous)):
        x = b
    else:
        x = b.astype(A.dtype, copy=True)

    cusparse.csrsm2(A, x, lower=lower, unit_diag=unit_diagonal)

    if x.dtype.char in 'fF':
        # Note: This is for compatibility with SciPy.
        dtype = numpy.promote_types(x.dtype, 'float64')
        x = x.astype(dtype)
    return x