def run_task(v):
    random.seed(v['seed'])
    np.random.seed(v['seed'])

    # Log performance of randomly initialized policy with FIXED goal [0.1, 0.1]
    logger.log("Initializing report...")
    log_dir = logger.get_snapshot_dir()  # problem with logger module here!!
    report = HTMLReport(osp.join(log_dir, 'report.html'), images_per_row=4)

    report.add_header("{}".format(EXPERIMENT_TYPE))
    report.add_text(format_dict(v))
    report.save()

    inner_env = normalize(Arm3dDiscEnv())

    fixed_goal_generator = FixedStateGenerator(state=v['ultimate_goal'])
    fixed_start_generator = FixedStateGenerator(state=v['ultimate_goal'])

    env = GoalStartExplorationEnv(
        env=inner_env,
        start_generator=fixed_start_generator,
        obs2start_transform=lambda x: x[:v['start_size']],
        goal_generator=fixed_goal_generator,
        obs2goal_transform=lambda x: x[-1 * v['goal_size']:],
        terminal_eps=v['terminal_eps'],
        distance_metric=v['distance_metric'],
        extend_dist_rew=v['extend_dist_rew'],
        inner_weight=v['inner_weight'],
        goal_weight=v['goal_weight'],
        terminate_env=True,
    )

    policy = GaussianMLPPolicy(
        env_spec=env.spec,
        hidden_sizes=(64, 64),
        # Fix the variance since different goals will require different variances, making this parameter hard to learn.
        learn_std=v['learn_std'],
        adaptive_std=v['adaptive_std'],
        std_hidden_sizes=(16,
                          16),  # this is only used if adaptive_std is true!
        output_gain=v['output_gain'],
        init_std=v['policy_init_std'],
    )

    baseline = LinearFeatureBaseline(env_spec=env.spec)

    # load the state collection from data_upload
    load_dir = 'data_upload/state_collections/'
    all_feasible_starts = pickle.load(
        open(
            osp.join(config.PROJECT_PATH, load_dir,
                     'disc_all_feasible_states_min.pkl'), 'rb'))
    print("we have %d feasible starts" % all_feasible_starts.size)

    all_starts = StateCollection(distance_threshold=v['coll_eps'])
    # brownian_starts = StateCollection(distance_threshold=v['regularize_starts'])
    # with env.set_kill_outside():
    #     seed_starts = generate_starts(env, starts=[v['start_goal']], horizon=10,  # this is smaller as they are seeds!
    #                                   variance=v['brownian_variance'], subsample=v['num_new_starts'])  # , animated=True, speedup=1)
    #
    # with env.set_kill_outside():
    #     find_all_feasible_states(env, seed_starts, distance_threshold=0.1, brownian_variance=1, animate=False)

    # show where these states are:
    # shuffled_starts = np.array(all_feasible_starts.state_list)
    # np.random.shuffle(shuffled_starts)
    # generate_starts(env, starts=shuffled_starts, horizon=100, variance=v['brownian_variance'], animated=True, speedup=10)

    # Use asymmetric self-play to run Alice to generate starts for Bob.
    env_alice = AliceEnv(env, env, policy, v['horizon'])

    policy_alice = GaussianMLPPolicy(
        env_spec=env_alice.spec,
        hidden_sizes=(64, 64),
        # Fix the variance since different goals will require different variances, making this parameter hard to learn.
        learn_std=v['learn_std'],
        adaptive_std=v['adaptive_std'],
        std_hidden_sizes=(16,
                          16),  # this is only used if adaptive_std is true!
        output_gain=v['output_gain_alice'],
        init_std=v['policy_init_std_alice'],
    )
    baseline_alice = LinearFeatureBaseline(env_spec=env_alice.spec)

    algo_alice = TRPO(
        env=env_alice,
        policy=policy_alice,
        baseline=baseline_alice,
        batch_size=v['pg_batch_size_alice'],
        max_path_length=v['horizon'],
        n_itr=v['inner_iters_alice'],
        step_size=0.01,
        discount=v['discount_alice'],
        plot=False,
    )

    for outer_iter in range(1, v['outer_iters']):

        logger.log("Outer itr # %i" % outer_iter)
        logger.log("Sampling starts")

        # with env.set_kill_outside():
        #     starts = generate_starts(env, starts=seed_starts, horizon=v['brownian_horizon'], variance=v['brownian_variance'])

        # regularization of the brownian starts
        # brownian_starts.empty()
        # brownian_starts.append(starts)
        # starts = brownian_starts.sample(size=v['num_new_starts'])

        starts = generate_starts_alice(env_bob=env,
                                       env_alice=env_alice,
                                       policy_bob=policy,
                                       policy_alice=policy_alice,
                                       algo_alice=algo_alice,
                                       start_states=[v['start_goal']],
                                       num_new_starts=v['num_new_starts'],
                                       alice_factor=v['alice_factor'],
                                       log_dir=log_dir)

        if v['replay_buffer'] and outer_iter > 0 and all_starts.size > 0:
            old_starts = all_starts.sample(v['num_old_starts'])
            starts = np.vstack([starts, old_starts])

        with ExperimentLogger(log_dir,
                              'last',
                              snapshot_mode='last',
                              hold_outter_log=True):
            logger.log("Updating the environment start generator")
            env.update_start_generator(
                UniformListStateGenerator(
                    starts.tolist(),
                    persistence=v['persistence'],
                    with_replacement=v['with_replacement'],
                ))

            logger.log("Training the algorithm")
            algo = TRPO(
                env=env,
                policy=policy,
                baseline=baseline,
                batch_size=v['pg_batch_size'],
                max_path_length=v['horizon'],
                n_itr=v['inner_iters'],
                step_size=0.01,
                discount=v['discount'],
                plot=False,
            )

            trpo_paths = algo.train()

        if v['use_trpo_paths']:
            logger.log("labeling starts with trpo rollouts")
            [starts, labels] = label_states_from_paths(
                trpo_paths,
                n_traj=2,
                key='goal_reached',  # using the min n_traj
                as_goal=False,
                env=env)
            paths = [path for paths in trpo_paths for path in paths]
        else:
            logger.log("labeling starts manually")
            labels, paths = label_states(starts,
                                         env,
                                         policy,
                                         v['horizon'],
                                         as_goals=False,
                                         n_traj=v['n_traj'],
                                         key='goal_reached',
                                         full_path=True)

        with logger.tabular_prefix("OnStarts_"):
            env.log_diagnostics(paths)
        logger.record_tabular('starts', starts.size)

        start_classes, text_labels = convert_label(labels)
        total_starts = labels.shape[0]
        logger.record_tabular('GenStarts_evaluated', total_starts)
        start_class_frac = OrderedDict(
        )  # this needs to be an ordered dict!! (for the log tabular)
        for k in text_labels.keys():
            frac = np.sum(start_classes == k) / total_starts
            logger.record_tabular('GenStart_frac_' + text_labels[k], frac)
            start_class_frac[text_labels[k]] = frac

        labels = np.logical_and(labels[:, 0],
                                labels[:, 1]).astype(int).reshape((-1, 1))

        logger.log("Labeling on uniform starts")
        with logger.tabular_prefix("Uniform_"):
            unif_starts = all_feasible_starts.sample(1000)
            mean_reward, paths = evaluate_states(unif_starts,
                                                 env,
                                                 policy,
                                                 v['horizon'],
                                                 n_traj=1,
                                                 key='goal_reached',
                                                 as_goals=False,
                                                 full_path=True)
            env.log_diagnostics(paths)

        logger.dump_tabular(with_prefix=True)

        # append new states to list of all starts (replay buffer): Not the low reward ones!!
        logger.log("Appending good goals to replay and generating seeds")
        filtered_raw_starts = [
            start for start, label in zip(starts, labels) if label[0] == 1
        ]
        all_starts.append(filtered_raw_starts)
Exemple #2
0
def run_task(v):
    random.seed(v['seed'])
    np.random.seed(v['seed'])
    sampling_res = 2 if 'sampling_res' not in v.keys() else v['sampling_res']
    samples_per_cell = 10  # for the oracle rejection sampling

    # Log performance of randomly initialized policy with FIXED goal [0.1, 0.1]
    logger.log("Initializing report and plot_policy_reward...")
    log_dir = logger.get_snapshot_dir()  # problem with logger module here!!
    report = HTMLReport(osp.join(log_dir, 'report.html'), images_per_row=5)

    report.add_header("{}".format(EXPERIMENT_TYPE))
    report.add_text(format_dict(v))

    inner_env = normalize(PointMazeEnv(maze_id=v['maze_id']))

    fixed_goal_generator = FixedStateGenerator(state=v['ultimate_goal'])
    uniform_start_generator = UniformStateGenerator(state_size=v['start_size'], bounds=v['start_range'],
                                                    center=v['start_center'])

    env = GoalStartExplorationEnv(
        env=inner_env,
        start_generator=uniform_start_generator,
        obs2start_transform=lambda x: x[:v['start_size']],
        goal_generator=fixed_goal_generator,
        obs2goal_transform=lambda x: x[:v['goal_size']],
        terminal_eps=v['terminal_eps'],
        distance_metric=v['distance_metric'],
        extend_dist_rew=v['extend_dist_rew'],
        only_feasible=v['only_feasible'],
        terminate_env=True,
    )

    policy = GaussianMLPPolicy(
        env_spec=env.spec,
        hidden_sizes=(64, 64),
        # Fix the variance since different goals will require different variances, making this parameter hard to learn.
        learn_std=v['learn_std'],
        adaptive_std=v['adaptive_std'],
        std_hidden_sizes=(16, 16),  # this is only used if adaptive_std is true!
        output_gain=v['output_gain'],
        init_std=v['policy_init_std'],
    )

    if v['constant_baseline']:
        logger.log("Using constant baseline")
        baseline = ConstantBaseline(env_spec=env.spec, value=1.0)
    else:
        logger.log("Using linear baseline")
        baseline = LinearFeatureBaseline(env_spec=env.spec)

    # initialize all logging arrays on itr0
    outer_iter = 0

    logger.log('Generating the Initial Heatmap...')
    plot_policy_means(policy, env, sampling_res=2, report=report, limit=v['goal_range'], center=v['goal_center'])
    test_and_plot_policy(policy, env, as_goals=False, max_reward=v['max_reward'], sampling_res=sampling_res,
                         n_traj=v['n_traj'],
                         itr=outer_iter, report=report, center=v['goal_center'],
                         limit=v['goal_range'])  # use goal for plot
    report.new_row()

    all_starts = StateCollection(distance_threshold=v['coll_eps'])
    seed_starts = generate_starts(env, starts=[v['ultimate_goal']], subsample=v['num_new_starts'])

    for outer_iter in range(1, v['outer_iters']):

        logger.log("Outer itr # %i" % outer_iter)
        logger.log("Sampling starts")

        starts = generate_starts(env, starts=seed_starts, subsample=v['num_new_starts'],
                                 horizon=v['brownian_horizon'], variance=v['brownian_variance'])
        labels = label_states(starts, env, policy, v['horizon'],
                              as_goals=False, n_traj=v['n_traj'], key='goal_reached')
        plot_labeled_states(starts, labels, report=report, itr=outer_iter, limit=v['goal_range'],
                            center=v['goal_center'], maze_id=v['maze_id'],
                            summary_string_base='initial starts labels:\n')
        report.save()

        if v['replay_buffer'] and outer_iter > 0 and all_starts.size > 0:
            old_starts = all_starts.sample(v['num_old_starts'])
            starts = np.vstack([starts, old_starts])

        with ExperimentLogger(log_dir, 'last', snapshot_mode='last', hold_outter_log=True):
            logger.log("Updating the environment start generator")
            env.update_start_generator(
                UniformListStateGenerator(
                    starts.tolist(), persistence=v['persistence'], with_replacement=v['with_replacement'],
                )
            )

            logger.log("Training the algorithm")
            algo = TRPO(
                env=env,
                policy=policy,
                baseline=baseline,
                batch_size=v['pg_batch_size'],
                max_path_length=v['horizon'],
                n_itr=v['inner_iters'],
                step_size=0.01,
                discount=v['discount'],
                plot=False,
            )

            trpo_paths = algo.train()

        if v['use_trpo_paths']:
            logger.log("labeling starts with trpo rollouts")
            [starts, labels] = label_states_from_paths(trpo_paths, n_traj=2, key='goal_reached',  # using the min n_traj
                                                       as_goal=False, env=env)
            paths = [path for paths in trpo_paths for path in paths]
        else:
            logger.log("labeling starts manually")
            labels, paths = label_states(starts, env, policy, v['horizon'], as_goals=False, n_traj=v['n_traj'],
                                         key='goal_reached', full_path=True)

        with logger.tabular_prefix("OnStarts_"):
            env.log_diagnostics(paths)
        logger.log('Generating the Heatmap...')
        plot_policy_means(policy, env, sampling_res=2, report=report, limit=v['goal_range'], center=v['goal_center'])
        test_and_plot_policy(policy, env, as_goals=False, max_reward=v['max_reward'], sampling_res=sampling_res,
                             n_traj=v['n_traj'],
                             itr=outer_iter, report=report, center=v['goal_center'], limit=v['goal_range'])

        logger.log("Labeling the starts")
        #labels = label_states(starts, env, policy, v['horizon'], as_goals=False, n_traj=v['n_traj'], key='goal_reached')

        plot_labeled_states(starts, labels, report=report, itr=outer_iter, limit=v['goal_range'],
                            center=v['goal_center'], maze_id=v['maze_id'])

        start_classes, text_labels = convert_label(labels)

        # ###### extra for deterministic:
        # logger.log("Labeling the goals deterministic")
        # with policy.set_std_to_0():
        #     labels_det = label_states(goals, env, policy, v['horizon'], n_traj=v['n_traj'], n_processes=1)
        # plot_labeled_states(goals, labels_det, report=report, itr=outer_iter, limit=v['goal_range'], center=v['goal_center'])

        labels = np.logical_and(labels[:, 0], labels[:, 1]).astype(int).reshape((-1, 1))

        logger.dump_tabular(with_prefix=False)
        report.new_row()

        # append new states to list of all starts (replay buffer): Not the low reward ones!!
        filtered_raw_starts = [start for start, label in zip(starts, labels) if label[0] == 1]
        all_starts.append(filtered_raw_starts)

        if v['seed_with'] == 'only_goods':
            if len(filtered_raw_starts) > 0:  # add a tone of noise if all the states I had ended up being high_reward!
                seed_starts = filtered_raw_starts
            elif np.sum(start_classes == 0) > np.sum(start_classes == 1):  # if more low reward than high reward
                seed_starts = all_starts.sample(300)  # sample them from the replay
            else:
                seed_starts = generate_starts(env, starts=starts, horizon=int(v['horizon'] * 10), subsample=v['num_new_starts'],
                                                  variance=v['brownian_variance'] * 10)
        elif v['seed_with'] == 'all_previous':
            seed_starts = starts
        elif v['seed_with'] == 'on_policy':
            seed_starts = generate_starts(env, policy, starts=starts, horizon=v['horizon'], subsample=v['num_new_starts'])
Exemple #3
0
def run_task(v):
    random.seed(v['seed'])
    np.random.seed(v['seed'])

    # Log performance of randomly initialized policy with FIXED goal [0.1, 0.1]
    logger.log("Initializing report...")
    log_dir = logger.get_snapshot_dir()  # problem with logger module here!!
    if log_dir is None:
        log_dir = "/home/michael/"
    report = HTMLReport(osp.join(log_dir, 'report.html'), images_per_row=4)

    report.add_header("{}".format(EXPERIMENT_TYPE))
    report.add_text(format_dict(v))

    inner_env = normalize(SwimmerMazeEnv())

    fixed_goal_generator = FixedStateGenerator(state=v['ultimate_goal'])
    fixed_start_generator = FixedStateGenerator(state=v['ultimate_goal'])

    env = GoalStartExplorationEnv(
        env=inner_env,
        start_generator=fixed_start_generator,
        obs2start_transform=lambda x: x[:v['start_size']],
        goal_generator=fixed_goal_generator,
        obs2goal_transform=lambda x: x[-3:-1],
        terminal_eps=v['terminal_eps'],
        distance_metric=v['distance_metric'],
        extend_dist_rew=v['extend_dist_rew'],
        inner_weight=v['inner_weight'],
        goal_weight=v['goal_weight'],
        terminate_env=True,
    )

    policy = GaussianMLPPolicy(
        env_spec=env.spec,
        hidden_sizes=(64, 64),
        # Fix the variance since different goals will require different variances, making this parameter hard to learn.
        learn_std=v['learn_std'],
        adaptive_std=v['adaptive_std'],
        std_hidden_sizes=(16,
                          16),  # this is only used if adaptive_std is true!
        output_gain=v['output_gain'],
        init_std=v['policy_init_std'],
    )

    baseline = LinearFeatureBaseline(env_spec=env.spec)

    # load the state collection from data_upload
    load_dir = 'data_upload/state_collections/'
    # all_feasible_starts = pickle.load(open(osp.join(config.PROJECT_PATH, load_dir, 'all_feasible_states_min.pkl'), 'rb'))
    # print("we have %d feasible starts" % all_feasible_starts.size)

    all_starts = StateCollection(distance_threshold=v['coll_eps'])
    # brownian_starts = StateCollection(distance_threshold=v['regularize_starts'])
    # with env.set_kill_outside():
    seed_starts = generate_starts(
        env,
        starts=[v['start_goal']],
        horizon=v['initial_brownian_horizon'],
        size=5000,  # size speeds up training a bit
        variance=v['brownian_variance'],
        subsample=v['num_new_starts'])  # , animated=True, speedup=1)
    np.random.shuffle(seed_starts)

    # with env.set_kill_outside():
    feasible_states = find_all_feasible_states_plotting(env,
                                                        seed_starts,
                                                        distance_threshold=1,
                                                        brownian_variance=1,
                                                        animate=True)

    # print("hi")
    # show where these states are:
    # shuffled_starts = np.array(seed_starts.state_list)
    # np.random.shuffle(shuffled_starts)
    # generate_starts(env, starts=seed_starts, horizon=100, variance=v['brownian_variance'], animated=True, speedup=10)

    if 'gae_lambda' not in v:
        v['gae_lambda'] = 1
    for outer_iter in range(1, v['outer_iters']):

        logger.log("Outer itr # %i" % outer_iter)
        logger.log("Sampling starts")

        starts = generate_starts(env,
                                 starts=seed_starts,
                                 subsample=v['num_new_starts'],
                                 size=5000,
                                 horizon=v['brownian_horizon'],
                                 variance=v['brownian_variance'])
        labels = label_states(starts,
                              env,
                              policy,
                              v['horizon'],
                              as_goals=False,
                              n_traj=v['n_traj'],
                              key='goal_reached')
        plot_labeled_states(starts,
                            labels,
                            report=report,
                            itr=outer_iter,
                            limit=v['goal_range'],
                            center=v['goal_center'],
                            maze_id=v['maze_id'],
                            summary_string_base='initial starts labels:\n')
        report.save()

        if v['replay_buffer'] and outer_iter > 0 and all_starts.size > 0:
            old_starts = all_starts.sample(v['num_old_starts'])
            starts = np.vstack([starts, old_starts])

        with ExperimentLogger(log_dir,
                              'last',
                              snapshot_mode='last',
                              hold_outter_log=True):
            logger.log("Updating the environment start generator")
            env.update_start_generator(
                UniformListStateGenerator(
                    starts.tolist(),
                    persistence=v['persistence'],
                    with_replacement=v['with_replacement'],
                ))

            logger.log("Training the algorithm")
            algo = TRPO(
                env=env,
                policy=policy,
                baseline=baseline,
                batch_size=v['pg_batch_size'],
                max_path_length=v['horizon'],
                n_itr=v['inner_iters'],
                gae_lambda=v['gae_lambda'],
                step_size=0.01,
                discount=v['discount'],
                plot=False,
            )

            algo.train()

        logger.log('Generating the Heatmap...')

        # policy means should not mean too much
        # plot_policy_means(policy, env, sampling_res=2, report=report, limit=v['goal_range'], center=v['goal_center'])
        test_and_plot_policy(policy,
                             env,
                             as_goals=False,
                             max_reward=v['max_reward'],
                             sampling_res=1,
                             n_traj=v['n_traj'],
                             itr=outer_iter,
                             report=report,
                             center=v['goal_center'],
                             limit=v['goal_range'])

        logger.log("Labeling the starts")
        labels = label_states(starts,
                              env,
                              policy,
                              v['horizon'],
                              as_goals=False,
                              n_traj=v['n_traj'],
                              key='goal_reached')

        plot_labeled_states(starts,
                            labels,
                            report=report,
                            itr=outer_iter,
                            limit=v['goal_range'],
                            center=v['goal_center'],
                            maze_id=v['maze_id'])

        # ###### extra for deterministic:
        # logger.log("Labeling the goals deterministic")
        # with policy.set_std_to_0():
        #     labels_det = label_states(goals, env, policy, v['horizon'], n_traj=v['n_traj'], n_processes=1)
        # plot_labeled_states(goals, labels_det, report=report, itr=outer_iter, limit=v['goal_range'], center=v['goal_center'])

        labels = np.logical_and(labels[:, 0],
                                labels[:, 1]).astype(int).reshape((-1, 1))

        logger.dump_tabular(with_prefix=False)
        report.new_row()

        # append new states to list of all starts (replay buffer): Not the low reward ones!!
        filtered_raw_starts = [
            start for start, label in zip(starts, labels) if label[0] == 1
        ]
        if len(
                filtered_raw_starts
        ) > 0:  # add a tone of noise if all the states I had ended up being high_reward!
            seed_starts = filtered_raw_starts
        else:
            seed_starts = generate_starts(env,
                                          starts=starts,
                                          horizon=v['horizon'] * 2,
                                          subsample=v['num_new_starts'],
                                          size=5000,
                                          variance=v['brownian_variance'] * 10)
        all_starts.append(filtered_raw_starts)
def run_task(v):
    random.seed(v['seed'])
    np.random.seed(v['seed'])

    # Log performance of randomly initialized policy with FIXED goal [0.1, 0.1]
    logger.log("Initializing report and plot_policy_reward...")
    log_dir = logger.get_snapshot_dir()  # problem with logger module here!!
    report = HTMLReport(osp.join(log_dir, 'report.html'), images_per_row=3)

    report.add_header("{}".format(EXPERIMENT_TYPE))
    report.add_text(format_dict(v))

    tf_session = tf.Session()

    inner_env = normalize(AntMazeEnv())

    uniform_goal_generator = UniformStateGenerator(state_size=v['goal_size'], bounds=v['goal_range'],
                                                   center=v['goal_center'])
    env = GoalExplorationEnv(
        env=inner_env, goal_generator=uniform_goal_generator,
        obs2goal_transform=lambda x: x[-3:-1],
        terminal_eps=v['terminal_eps'],
        distance_metric=v['distance_metric'],
        extend_dist_rew=v['extend_dist_rew'],
        only_feasible=v['only_feasible'],
        terminate_env=True,
    )

    policy = GaussianMLPPolicy(
        env_spec=env.spec,
        hidden_sizes=(64, 64),
        # Fix the variance since different goals will require different variances, making this parameter hard to learn.
        learn_std=v['learn_std'],
        adaptive_std=v['adaptive_std'],
        std_hidden_sizes=(16, 16),  # this is only used if adaptive_std is true!
        output_gain=v['output_gain'],
        init_std=v['policy_init_std'],
    )

    baseline = LinearFeatureBaseline(env_spec=env.spec)

    # initialize all logging arrays on itr0
    outer_iter = 0

    logger.log('Generating the Initial Heatmap...')
    test_and_plot_policy(policy, env, max_reward=v['max_reward'], sampling_res=sampling_res, n_traj=v['n_traj'],
                         itr=outer_iter, report=report, limit=v['goal_range'], center=v['goal_center'])

    # GAN
    logger.log("Instantiating the GAN...")
    gan_configs = {key[4:]: value for key, value in v.items() if 'GAN_' in key}
    for key, value in gan_configs.items():
        if value is tf.train.AdamOptimizer:
            gan_configs[key] = tf.train.AdamOptimizer(gan_configs[key + '_stepSize'])
        if value is tflearn.initializations.truncated_normal:
            gan_configs[key] = tflearn.initializations.truncated_normal(stddev=gan_configs[key + '_stddev'])

    gan = StateGAN(
        state_size=v['goal_size'],
        evaluater_size=v['num_labels'],
        state_range=v['goal_range'],
        state_center=v['goal_center'],
        state_noise_level=v['goal_noise_level'],
        generator_layers=v['gan_generator_layers'],
        discriminator_layers=v['gan_discriminator_layers'],
        noise_size=v['gan_noise_size'],
        tf_session=tf_session,
        configs=gan_configs,
    )
    logger.log("pretraining the GAN...")
    if v['smart_init']:
        feasible_goals = generate_initial_goals(env, policy, v['goal_range'], goal_center=v['goal_center'],
                                                horizon=v['horizon'])
        labels = np.ones((feasible_goals.shape[0], 2)).astype(np.float32)  # make them all good goals
        plot_labeled_states(feasible_goals, labels, report=report, itr=outer_iter,
                            limit=v['goal_range'], center=v['goal_center'])

        dis_loss, gen_loss = gan.pretrain(states=feasible_goals, outer_iters=v['gan_outer_iters'])
        print("Loss of Gen and Dis: ", gen_loss, dis_loss)
    else:
        gan.pretrain_uniform()

    # log first samples form the GAN
    initial_goals, _ = gan.sample_states_with_noise(v['num_new_goals'])

    logger.log("Labeling the goals")
    labels = label_states(initial_goals, env, policy, v['horizon'], n_traj=v['n_traj'], key='goal_reached')

    plot_labeled_states(initial_goals, labels, report=report, itr=outer_iter,
                        limit=v['goal_range'], center=v['goal_center'])
    report.new_row()

    all_goals = StateCollection(distance_threshold=v['coll_eps'])

    for outer_iter in range(1, v['outer_iters']):

        logger.log("Outer itr # %i" % outer_iter)
        # Sample GAN
        logger.log("Sampling goals from the GAN")
        raw_goals, _ = gan.sample_states_with_noise(v['num_new_goals'])

        if v['replay_buffer'] and outer_iter > 0 and all_goals.size > 0:
            old_goals = all_goals.sample(v['num_old_goals'])
            goals = np.vstack([raw_goals, old_goals])
        else:
            goals = raw_goals

        # if needed label the goals before any update
        if v['label_with_variation']:
            old_labels, old_rewards = label_states(goals, env, policy, v['horizon'], as_goals=True, n_traj=v['n_traj'],
                                                   key='goal_reached', full_path=False, return_rew=True)

        # itr_label = outer_iter  # use outer_iter to log everything or "last" to log only the last
        # with ExperimentLogger(log_dir, itr_label, snapshot_mode='last', hold_outter_log=True):
        with ExperimentLogger(log_dir, 'last', snapshot_mode='last', hold_outter_log=True):
            logger.log("Updating the environment goal generator")
            env.update_goal_generator(
                UniformListStateGenerator(
                    goals.tolist(), persistence=v['persistence'], with_replacement=v['with_replacement'],
                )
            )

            logger.log("Training the algorithm")
            algo = TRPO(
                env=env,
                policy=policy,
                baseline=baseline,
                batch_size=v['pg_batch_size'],
                max_path_length=v['horizon'],
                n_itr=v['inner_iters'],
                step_size=0.01,
                plot=False,
            )

            trpo_paths = algo.train()

        if v['use_trpo_paths']:
            logger.log("labeling starts with trpo rollouts")
            [goals, labels] = label_states_from_paths(trpo_paths, n_traj=2, key='goal_reached',  # using the min n_traj
                                                       as_goal=True, env=env)
            paths = [path for paths in trpo_paths for path in paths]
        elif v['label_with_variation']:
            labels, paths = label_states(goals, env, policy, v['horizon'], as_goals=True, n_traj=v['n_traj'],
                                         key='goal_reached', old_rewards=old_rewards, full_path=True)
        else:
            logger.log("labeling starts manually")
            labels, paths = label_states(goals, env, policy, v['horizon'], as_goals=True, n_traj=v['n_traj'],
                                         key='goal_reached', full_path=True)

        with logger.tabular_prefix("OnStarts_"):
            env.log_diagnostics(paths)

        logger.log('Generating the Heatmap...')
        test_and_plot_policy(policy, env, max_reward=v['max_reward'], sampling_res=sampling_res, n_traj=v['n_traj'],
                             itr=outer_iter, report=report, limit=v['goal_range'], center=v['goal_center'])

        #logger.log("Labeling the goals")
        #labels = label_states(goals, env, policy, v['horizon'], n_traj=v['n_traj'], key='goal_reached')

        plot_labeled_states(goals, labels, report=report, itr=outer_iter, limit=v['goal_range'],
                            center=v['goal_center'], maze_id=v['maze_id'])

        # ###### extra for deterministic:
        # logger.log("Labeling the goals deterministic")
        # with policy.set_std_to_0():
        #     labels_det = label_states(goals, env, policy, v['horizon'], n_traj=v['n_traj'], n_processes=1)
        # plot_labeled_states(goals, labels_det, report=report, itr=outer_iter, limit=v['goal_range'], center=v['goal_center'])

        if v['label_with_variation']:  # this will use only the performance variation for labeling
            labels = np.array(labels[:, -1], dtype=int).reshape((-1, 1))
        else:
            labels = np.logical_and(labels[:, 0], labels[:, 1]).astype(int).reshape((-1, 1))

        logger.log("Training the GAN")
        gan.train(
            goals, labels,
            v['gan_outer_iters'],
        )

        logger.dump_tabular(with_prefix=False)
        report.new_row()

        # append new goals to list of all goals (replay buffer): Not the low reward ones!!
        filtered_raw_goals = [goal for goal, label in zip(goals, labels) if label[0] == 1]
        all_goals.append(filtered_raw_goals)

        if v['add_on_policy']:
            logger.log("sampling on policy")
            feasible_goals = generate_initial_goals(env, policy, v['goal_range'], goal_center=v['goal_center'],
                                                    horizon=v['horizon'])
            # downsampled_feasible_goals = feasible_goals[np.random.choice(feasible_goals.shape[0], v['add_on_policy']),:]
            all_goals.append(feasible_goals)
Exemple #5
0
def run_task(v):
    random.seed(v['seed'])
    np.random.seed(v['seed'])
    sampling_res = 2 if 'sampling_res' not in v.keys() else v['sampling_res']
    samples_per_cell = 10  # for the oracle rejection sampling

    logger.log("Initializing report and plot_policy_reward...")
    log_dir = logger.get_snapshot_dir()  # problem with logger module here!!
    report = HTMLReport(osp.join(log_dir, 'report.html'), images_per_row=3)

    report.add_header("{}".format(EXPERIMENT_TYPE))
    report.add_text(format_dict(v))

    inner_env = normalize(PointMazeEnv(maze_id=v['maze_id']))

    fixed_goal_generator = FixedStateGenerator(state=v['ultimate_goal'])
    uniform_start_generator = UniformStateGenerator(state_size=v['start_size'], bounds=v['start_range'],
                                                    center=v['start_center'])

    env = GoalStartExplorationEnv(
        env=inner_env,
        start_generator=uniform_start_generator,
        goal_generator=fixed_goal_generator,
        obs2start_transform=lambda x: x[:v['start_size']],
        obs2goal_transform=lambda x: x[:v['goal_size']],
        terminal_eps=v['terminal_eps'],
        distance_metric=v['distance_metric'],
        extend_dist_rew=v['extend_dist_rew'],
        only_feasible=v['only_feasible'],
        terminate_env=True,
    )

    policy = GaussianMLPPolicy(
        env_spec=env.spec,
        hidden_sizes=(64, 64),
        # Fix the variance since different goals will require different variances, making this parameter hard to learn.
        learn_std=v['learn_std'],
        adaptive_std=v['adaptive_std'],
        std_hidden_sizes=(16, 16),  # this is only used if adaptive_std is true!
        output_gain=v['output_gain'],
        init_std=v['policy_init_std'],
    )

    baseline = LinearFeatureBaseline(env_spec=env.spec)

    # initialize all logging arrays on itr0
    outer_iter = 0

    logger.log('Generating the Initial Heatmap...')
    plot_policy_means(policy, env, sampling_res=2, report=report, limit=v['start_range'], center=v['start_center'])
    test_and_plot_policy(policy, env, as_goals=False, max_reward=v['max_reward'], sampling_res=sampling_res, n_traj=v['n_traj'],
                         itr=outer_iter, report=report, center=v['start_center'], limit=v['start_range'])
    report.new_row()

    all_starts = StateCollection(distance_threshold=v['coll_eps'])
    total_rollouts = 0

    for outer_iter in range(1, v['outer_iters']):

        logger.log("Outer itr # %i" % outer_iter)
        logger.log("Sampling starts")

        starts = np.array([]).reshape((-1, v['start_size']))
        k = 0
        while starts.shape[0] < v['num_new_starts']:
            print('good starts collected: ', starts.shape[0])
            logger.log("Sampling and labeling the starts: %d" % k)
            k += 1
            unif_starts = sample_unif_feas(env, samples_per_cell=samples_per_cell)
            if v['start_size'] > 2:
                unif_starts = np.array([np.concatenate([start, np.random.uniform(-v['start_range'], v['start_range'], 2)])
                               for start in unif_starts])
            labels = label_states(unif_starts, env, policy, v['horizon'],
                                  as_goals=False, n_traj=v['n_traj'], key='goal_reached')
            # plot_labeled_states(unif_starts, labels, report=report, itr=outer_iter, limit=v['start_range'],
            #                     center=v['start_center'], maze_id=v['maze_id'])
            logger.log("Converting the labels")
            init_classes, text_labels = convert_label(labels)
            starts = np.concatenate([starts, unif_starts[init_classes == 2]]).reshape((-1, v['start_size']))

        if v['replay_buffer'] and outer_iter > 0 and all_starts.size > 0:
            old_starts = all_starts.sample(v['num_old_starts'])
            starts = np.vstack([starts, old_starts])
        # report.new_row()

        with ExperimentLogger(log_dir, 'last', snapshot_mode='last', hold_outter_log=True):
            logger.log("Updating the environment start generator")
            env.update_start_generator(
                UniformListStateGenerator(
                    starts.tolist(), persistence=v['persistence'], with_replacement=v['with_replacement'],
                )
            )

            logger.log("Training the algorithm")
            algo = TRPO(
                env=env,
                policy=policy,
                baseline=baseline,
                batch_size=v['pg_batch_size'],
                max_path_length=v['horizon'],
                n_itr=v['inner_iters'],
                step_size=0.01,
                discount=v['discount'],
                gae_lambda=v['gae_lambda'],
                plot=False,
            )

            algo.train()

        logger.log('Generating the Heatmap...')
        plot_policy_means(policy, env, sampling_res=2, report=report, limit=v['start_range'], center=v['start_center'])
        test_and_plot_policy(policy, env, as_goals=False, max_reward=v['max_reward'], sampling_res=sampling_res, n_traj=v['n_traj'],
                             itr=outer_iter, report=report, center=v['goal_center'], limit=v['goal_range'])

        logger.log("Labeling the starts")
        labels = label_states(starts, env, policy, v['horizon'], as_goals=False, n_traj=v['n_traj'], key='goal_reached')

        plot_labeled_states(starts, labels, report=report, itr=outer_iter, limit=v['goal_range'],
                            center=v['goal_center'], maze_id=v['maze_id'])

        # ###### extra for deterministic:
        # logger.log("Labeling the goals deterministic")
        # with policy.set_std_to_0():
        #     labels_det = label_states(goals, env, policy, v['horizon'], n_traj=v['n_traj'], n_processes=1)
        # plot_labeled_states(goals, labels_det, report=report, itr=outer_iter, limit=v['goal_range'], center=v['goal_center'])

        labels = np.logical_and(labels[:, 0], labels[:, 1]).astype(int).reshape((-1, 1))

        # rollouts used for labeling (before TRPO itrs):
        num_empty_spaces = len(unwrap_maze(env).find_empty_space())
        logger.record_tabular('LabelingRollouts', k * v['n_traj'] * samples_per_cell * num_empty_spaces)
        total_rollouts += k * v['n_traj'] * samples_per_cell * num_empty_spaces
        logger.record_tabular('TotalLabelingRollouts', total_rollouts)

        logger.dump_tabular(with_prefix=False)
        report.new_row()

        # append new goals to list of all goals (replay buffer): Not the low reward ones!!
        filtered_raw_starts = [start for start, label in zip(starts, labels) if label[0] == 1]
        all_starts.append(filtered_raw_starts)
Exemple #6
0
def run_task(v):
    random.seed(v['seed'])
    np.random.seed(v['seed'])
    sampling_res = 0 if 'sampling_res' not in v.keys() else v['sampling_res']
    unif_samples = 300

    # Log performance of randomly initialized policy with FIXED goal [0.1, 0.1]
    logger.log("Initializing report and plot_policy_reward...")
    log_dir = logger.get_snapshot_dir()  # problem with logger module here!!
    report = HTMLReport(osp.join(log_dir, 'report.html'), images_per_row=3)

    report.add_header("{}".format(EXPERIMENT_TYPE))
    report.add_text(format_dict(v))

    inner_env = normalize(AntEnv())

    uniform_goal_generator = UniformStateGenerator(state_size=v['goal_size'],
                                                   bounds=v['goal_range'],
                                                   center=v['goal_center'])
    env = GoalExplorationEnv(
        env=inner_env,
        goal_generator=uniform_goal_generator,
        obs2goal_transform=lambda x: x[-3:-1],
        terminal_eps=v['terminal_eps'],
        distance_metric=v['distance_metric'],
        extend_dist_rew=v['extend_dist_rew'],
        append_transformed_obs=v['append_transformed_obs'],
        append_extra_info=v['append_extra_info'],
        terminate_env=True,
    )

    policy = GaussianMLPPolicy(
        env_spec=env.spec,
        hidden_sizes=(64, 64),
        # Fix the variance since different goals will require different variances, making this parameter hard to learn.
        learn_std=v['learn_std'],
        adaptive_std=v['adaptive_std'],
        std_hidden_sizes=(16,
                          16),  # this is only used if adaptive_std is true!
        output_gain=v['output_gain'],
        init_std=v['policy_init_std'],
    )

    baseline = LinearFeatureBaseline(env_spec=env.spec)
    if v['baseline'] == 'g_mlp':
        baseline = GaussianMLPBaseline(env_spec=env.spec)

    # initialize all logging arrays on itr0
    outer_iter = 0

    logger.log('Generating the Initial Heatmap...')
    test_and_plot_policy(policy,
                         env,
                         max_reward=v['max_reward'],
                         sampling_res=sampling_res,
                         n_traj=v['n_traj'],
                         itr=outer_iter,
                         report=report,
                         limit=v['goal_range'],
                         center=v['goal_center'],
                         bounds=v['goal_range'])
    report.new_row()

    all_goals = StateCollection(distance_threshold=v['coll_eps'])
    total_rollouts = 0

    for outer_iter in range(1, v['outer_iters']):
        logger.log("Outer itr # %i" % outer_iter)
        logger.log("Sampling goals")

        goals = np.array([]).reshape((-1, v['goal_size']))
        k = 0
        while goals.shape[0] < v['num_new_goals']:
            print('good goals collected: ', goals.shape[0])
            logger.log("Sampling and labeling the goals: %d" % k)
            k += 1
            unif_goals = np.random.uniform(
                np.array(v['goal_center']) - np.array(v['goal_range']),
                np.array(v['goal_center']) + np.array(v['goal_range']),
                size=(unif_samples, v['goal_size']))
            labels = label_states(unif_goals,
                                  env,
                                  policy,
                                  v['horizon'],
                                  n_traj=v['n_traj'],
                                  key='goal_reached')
            logger.log("Converting the labels")
            init_classes, text_labels = convert_label(labels)
            goals = np.concatenate([goals,
                                    unif_goals[init_classes == 2]]).reshape(
                                        (-1, v['goal_size']))

        if v['replay_buffer'] and outer_iter > 0 and all_goals.size > 0:
            old_goals = all_goals.sample(
                v['num_old_goals'])  #todo: replay noise?
            goals = np.vstack([goals, old_goals])

        with ExperimentLogger(log_dir,
                              'last',
                              snapshot_mode='last',
                              hold_outter_log=True):
            logger.log("Updating the environment goal generator")
            env.update_goal_generator(
                UniformListStateGenerator(
                    goals.tolist(),
                    persistence=v['persistence'],
                    with_replacement=v['with_replacement'],
                ))

            logger.log("Training the algorithm")
            algo = TRPO(
                env=env,
                policy=policy,
                baseline=baseline,
                batch_size=v['pg_batch_size'],
                max_path_length=v['horizon'],
                n_itr=v['inner_iters'],
                step_size=0.01,
                plot=False,
            )

            trpo_paths = algo.train()

        logger.log("labeling starts with trpo rollouts")
        [goals, labels] = label_states_from_paths(
            trpo_paths,
            n_traj=2,
            key='goal_reached',  # using the min n_traj
            as_goal=True,
            env=env)
        paths = [path for paths in trpo_paths for path in paths]
        with logger.tabular_prefix("OnStarts_"):
            env.log_diagnostics(paths)

        logger.log('Generating the Heatmap...')
        test_and_plot_policy(policy,
                             env,
                             max_reward=v['max_reward'],
                             sampling_res=sampling_res,
                             n_traj=v['n_traj'],
                             itr=outer_iter,
                             report=report,
                             limit=v['goal_range'],
                             center=v['goal_center'],
                             bounds=v['goal_range'])

        plot_labeled_states(goals,
                            labels,
                            report=report,
                            itr=outer_iter,
                            limit=v['goal_range'],
                            center=v['goal_center'])

        # ###### extra for deterministic:
        # logger.log("Labeling the goals deterministic")
        # with policy.set_std_to_0():
        #     labels_det = label_states(goals, env, policy, v['horizon'], n_traj=v['n_traj'], n_processes=1)
        # plot_labeled_states(goals, labels_det, report=report, itr=outer_iter, limit=v['goal_range'], center=v['goal_center'])

        labels = np.logical_and(labels[:, 0],
                                labels[:, 1]).astype(int).reshape((-1, 1))

        # rollouts used for labeling (before TRPO itrs):
        logger.record_tabular('LabelingRollouts',
                              k * v['n_traj'] * unif_samples)
        total_rollouts += k * v['n_traj'] * unif_samples
        logger.record_tabular('TotalLabelingRollouts', total_rollouts)

        logger.dump_tabular(with_prefix=False)
        report.new_row()

        # append new goals to list of all goals (replay buffer): Not the low reward ones!!
        filtered_raw_goals = [
            goal for goal, label in zip(goals, labels) if label[0] == 1
        ]
        all_goals.append(filtered_raw_goals)
Exemple #7
0
def run_task(v):
    random.seed(v['seed'])
    np.random.seed(v['seed'])
    sampling_res = 2 if 'sampling_res' not in v.keys() else v['sampling_res']

    logger.log("Initializing report and plot_policy_reward...")
    log_dir = logger.get_snapshot_dir()
    report = HTMLReport(osp.join(log_dir, 'report.html'), images_per_row=1000)

    report.add_header("{}".format(EXPERIMENT_TYPE))
    report.add_text(format_dict(v))

    inner_env = normalize(PointMazeEnv(maze_id=v['maze_id']))

    fixed_goal_generator = FixedStateGenerator(state=v['ultimate_goal'])
    uniform_start_generator = UniformStateGenerator(state_size=v['start_size'], bounds=v['start_range'],
                                                    center=v['start_center'])

    env = GoalStartExplorationEnv(
        env=inner_env,
        start_generator=uniform_start_generator,
        obs2start_transform=lambda x: x[:v['start_size']],
        goal_generator=fixed_goal_generator,
        obs2goal_transform=lambda x: x[:v['goal_size']],
        terminal_eps=v['terminal_eps'],
        distance_metric=v['distance_metric'],
        extend_dist_rew=v['extend_dist_rew'],
        only_feasible=v['only_feasible'],
        terminate_env=True,
    )

    policy = GaussianMLPPolicy(
        env_spec=env.spec,
        hidden_sizes=(64, 64),
        # Fix the variance since different goals will require different variances, making this parameter hard to learn.
        learn_std=v['learn_std'],
        adaptive_std=v['adaptive_std'],
        std_hidden_sizes=(16, 16),  # this is only used if adaptive_std is true!
        output_gain=v['output_gain'],
        init_std=v['policy_init_std'],
    )

    if v["baseline"] == "MLP":
        baseline = GaussianMLPBaseline(env_spec=env.spec)
    else:
        baseline = LinearFeatureBaseline(env_spec=env.spec)

    # initialize all logging arrays on itr0
    outer_iter = 0
    all_starts = StateCollection(distance_threshold=v['coll_eps'])

    # seed_starts: from which we will be performing brownian motion exploration
    seed_starts = generate_starts(env, starts=[v['ultimate_goal']], subsample=v['num_new_starts'])

    def plot_states(states, report, itr, summary_string, **kwargs):
        states = np.array(states)
        if states.size == 0:
            states = np.zeros((1, 2))
        img = plot_labeled_samples(
            states, np.zeros(len(states), dtype='uint8'), markers={0: 'o'}, text_labels={0: "all"}, **kwargs)
        report.add_image(img, 'itr: {}\n{}'.format(itr, summary_string), width=500)

    for outer_iter in range(1, v['outer_iters']):
        report.new_row()

        logger.log("Outer itr # %i" % outer_iter)
        logger.log("Sampling starts")

        plot_states(
            seed_starts, report=report, itr=outer_iter, limit=v['goal_range'], center=v['goal_center'],
            maze_id=v['maze_id'], summary_string="seed starts")

        starts = generate_starts(env, starts=seed_starts, subsample=v['num_new_starts'],
                                 horizon=v['brownian_horizon'], variance=v['brownian_variance'])

        plot_states(
            starts, report=report, itr=outer_iter, limit=v['goal_range'], center=v['goal_center'],
            maze_id=v['maze_id'], summary_string="brownian starts")

        sampled_from_buffer = []
        if v['replay_buffer'] and outer_iter > 0 and all_starts.size > 0:
            sampled_from_buffer = all_starts.sample(v['num_old_starts'])
            starts = np.vstack([starts, sampled_from_buffer])

        plot_states(
            sampled_from_buffer, report=report, itr=outer_iter, limit=v['goal_range'],
            center=v['goal_center'], maze_id=v['maze_id'], summary_string="states sampled from buffer")

        labels = label_states(starts, env, policy, v['horizon'], as_goals=False, n_traj=v['n_traj'], key='goal_reached')
        plot_labeled_states(starts, labels, report=report, itr=outer_iter, limit=v['goal_range'],
                            center=v['goal_center'], maze_id=v['maze_id'],
                            summary_string_base='all starts before update\n')

        with ExperimentLogger(log_dir, 'last', snapshot_mode='last', hold_outter_log=True):
            logger.log("Updating the environment start generator")
            env.update_start_generator(
                UniformListStateGenerator(
                    starts.tolist(), persistence=v['persistence'], with_replacement=v['with_replacement'],
                )
            )

            logger.log("Training the algorithm")
            algo = TRPO(
                env=env,
                policy=policy,
                baseline=baseline,
                batch_size=v['pg_batch_size'],
                max_path_length=v['horizon'],
                n_itr=v['inner_iters'],
                step_size=0.01,
                discount=v['discount'],
                plot=False,
            )

            trpo_paths = algo.train()

        if v['use_trpo_paths']:
            logger.log("labeling starts with trpo rollouts")
            [starts, labels] = label_states_from_paths(
                trpo_paths, n_traj=2, key='goal_reached', as_goal=False, env=env)
            paths = [path for paths in trpo_paths for path in paths]
        else:
            logger.log("labeling starts manually")
            labels, paths = label_states(
                starts, env, policy, v['horizon'], as_goals=False, n_traj=v['n_traj'], key='goal_reached', full_path=True)

        start_classes, text_labels = convert_label(labels)

        plot_labeled_states(starts, labels, report=report, itr=outer_iter, limit=v['goal_range'],
                            center=v['goal_center'], maze_id=v['maze_id'],
                            summary_string_base="all starts after update\n")

        with logger.tabular_prefix("OnStarts_"):
            env.log_diagnostics(paths)

        labels = np.logical_and(labels[:, 0], labels[:, 1]).astype(int).reshape((-1, 1))

        # append new states to list of all starts (replay buffer): Not the low reward ones!!
        filtered_raw_starts = [start for start, label in zip(starts, labels) if label[0] == 1]

        all_starts.append(filtered_raw_starts)

        if v['seed_with'] == 'only_goods':
            if len(filtered_raw_starts) > 0:
                logger.log("Only goods A")
                seed_starts = filtered_raw_starts

            elif np.sum(start_classes == 0) > np.sum(start_classes == 1):  # if more low reward than high reward
                logger.log("Only goods B")
                seed_starts = all_starts.sample(300)  # sample them from the replay

            else:
                logger.log("Only goods C")
                # add a ton of noise if all the states I had ended up being high_reward
                seed_starts = generate_starts(
                    env, starts=starts, horizon=int(v['horizon'] * 10),
                    subsample=v['num_new_starts'], variance=v['brownian_variance'] * 10)

        elif v['seed_with'] == 'all_previous':
            seed_starts = starts

        elif v['seed_with'] == 'on_policy':
            seed_starts = generate_starts(env, policy, starts=starts, horizon=v['horizon'], subsample=v['num_new_starts'])

        logger.log('Generating Heatmap...')
        plot_policy_means(
            policy, env, sampling_res=sampling_res, report=report, limit=v['goal_range'], center=v['goal_center'])

        _, _, states, returns, successes = test_and_plot_policy2(
            policy, env, as_goals=False, max_reward=v['max_reward'], sampling_res=sampling_res, n_traj=v['n_traj'],
            itr=outer_iter, report=report, center=v['goal_center'], limit=v['goal_range'])

        eval_state_path = osp.join(log_dir, "eval_states.json")
        if not osp.exists(eval_state_path):
            with open(eval_state_path, 'w') as f:
                json.dump(np.array(states).tolist(), f)

        with open(osp.join(log_dir, 'eval_pos_per_state_mean_return.csv'), 'a') as f:
            writer = csv.writer(f)
            row = [outer_iter] + list(returns)
            writer.writerow(row)

        with open(osp.join(log_dir, 'eval_pos_per_state_mean_success.csv'), 'a') as f:
            writer = csv.writer(f)
            row = [outer_iter] + list(successes)
            writer.writerow(row)

        logger.dump_tabular()

        report.save()

        if outer_iter == 1 or outer_iter % 5 == 0 and v.get('scratch_dir', False):
            command = 'rsync -a {} {}'.format(os.path.join(log_dir, ''), os.path.join(v['scratch_dir'], ''))
            print("Running command:\n{}".format(command))
            subprocess.run(command.split(), check=True)

    if v.get('scratch_dir', False):
        command = 'rsync -a {} {}'.format(os.path.join(log_dir, ''), os.path.join(v['scratch_dir'], ''))
        print("Running command:\n{}".format(command))
        subprocess.run(command.split(), check=True)
def run_task(v):
    random.seed(v['seed'])
    np.random.seed(v['seed'])

    # Log performance of randomly initialized policy with FIXED goal [0.1, 0.1]
    logger.log("Initializing report...")
    log_dir = logger.get_snapshot_dir()  # problem with logger module here!!
    report = HTMLReport(osp.join(log_dir, 'report.html'), images_per_row=4)

    report.add_header("{}".format(EXPERIMENT_TYPE))
    report.add_text(format_dict(v))

    inner_env = normalize(Arm3dKeyEnv(ctrl_cost_coeff=v['ctrl_cost_coeff']))

    fixed_goal_generator = FixedStateGenerator(state=v['ultimate_goal'])
    fixed_start_generator = FixedStateGenerator(state=v['start_goal'])

    env = GoalStartExplorationEnv(
        env=inner_env,
        start_generator=fixed_start_generator,
        obs2start_transform=lambda x: x[:v['start_size']],
        goal_generator=fixed_goal_generator,
        obs2goal_transform=lambda x: x[-1 * v['goal_size']:
                                       ],  # the goal are the last 9 coords
        terminal_eps=v['terminal_eps'],
        distance_metric=v['distance_metric'],
        extend_dist_rew=v['extend_dist_rew'],
        inner_weight=v['inner_weight'],
        goal_weight=v['goal_weight'],
        terminate_env=True,
    )

    policy = GaussianMLPPolicy(
        env_spec=env.spec,
        hidden_sizes=v['policy_hidden_sizes'],
        # Fix the variance since different goals will require different variances, making this parameter hard to learn.
        learn_std=v['learn_std'],
        adaptive_std=v['adaptive_std'],
        std_hidden_sizes=(16,
                          16),  # this is only used if adaptive_std is true!
        output_gain=v['output_gain'],
        init_std=v['policy_init_std'],
    )

    if v['baseline'] == 'linear':
        baseline = LinearFeatureBaseline(env_spec=env.spec)
    elif v['baseline'] == 'g_mlp':
        baseline = GaussianMLPBaseline(env_spec=env.spec)

    algo = TRPO(
        env=env,
        policy=policy,
        baseline=baseline,
        batch_size=v['pg_batch_size'],
        max_path_length=v['horizon'],
        n_itr=v['inner_iters'],
        step_size=0.01,
        discount=v['discount'],
        plot=False,
    )

    # load the state collection from data_upload
    load_dir = 'data_upload/state_collections/'
    all_feasible_starts = pickle.load(
        open(
            osp.join(config.PROJECT_PATH, load_dir, 'all_feasible_states.pkl'),
            'rb'))
    # all_feasible_starts = pickle.load(
    #     open(osp.join(config.PROJECT_PATH, load_dir, 'key_all_feasible_04_230000.pkl'), 'rb'))
    # all_feasible_starts = pickle.load(
    #     open(osp.join(config.PROJECT_PATH, load_dir, 'key_all_feasible_states_med_rad4.pkl'), 'rb'))

    # all_feasible_starts2 = pickle.load(
    #     open(osp.join(config.PROJECT_PATH, load_dir, 'key_all_feasible_states_min_rad4.pkl'), 'rb'))
    # all_feasible_starts3 = pickle.load(
    #     open(osp.join(config.PROJECT_PATH, load_dir, 'key_all_feasible_states_max_rad2.pkl'), 'rb'))
    print("we have %d feasible starts" % all_feasible_starts.size)

    all_starts = StateCollection(distance_threshold=v['coll_eps'])
    brownian_starts = StateCollection(
        distance_threshold=v['regularize_starts'])

    logger.log(
        'Generating seed starts from the goal (horizon 10, subsample 600 of them)'
    )
    with algo.env.set_kill_outside(radius=v['kill_radius']):
        seed_starts = generate_starts(
            env,
            starts=[v['start_goal']],
            horizon=10,  # this is smaller as they are seeds!
            variance=v['brownian_variance'],
            subsample=v['num_new_starts'])  # , animated=True, speedup=10)

        # seed_starts = all_feasible_starts.states
        # with env.set_kill_outside(radius=0.4):
        # find_all_feasible_states(env, seed_starts, distance_threshold=0.1, brownian_variance=1, animate=False)

    # # show where these states are:
    # shuffled_starts = np.array(all_feasible_starts.state_list)
    # np.random.shuffle(shuffled_starts)
    # generate_starts(env, starts=shuffled_starts, horizon=100, variance=v['brownian_variance'],
    #                 zero_action=True, animated=True, speedup=10)

    for outer_iter in range(1, v['outer_iters']):

        logger.log("Outer itr # %i" % outer_iter)
        logger.log("Sampling starts")

        with algo.env.set_kill_outside(radius=v['kill_radius']):
            starts = generate_starts(algo.env,
                                     starts=seed_starts,
                                     horizon=v['brownian_horizon'],
                                     variance=v['brownian_variance'])
        # regularization of the brownian starts
        brownian_starts.empty()
        brownian_starts.append(starts)
        starts = brownian_starts.sample(size=v['num_new_starts'])

        if v['replay_buffer'] and outer_iter > 0 and all_starts.size > 0:
            old_starts = all_starts.sample(v['num_old_starts'])
            starts = np.vstack([starts, old_starts])

        with ExperimentLogger(log_dir,
                              50 * (outer_iter // 50 + 1),
                              snapshot_mode='last',
                              hold_outter_log=True):
            logger.log("Updating the environment start generator")
            algo.env.update_start_generator(
                UniformListStateGenerator(
                    starts.tolist(),
                    persistence=v['persistence'],
                    with_replacement=v['with_replacement'],
                ))
            # algo.start_worker()

            logger.log("Training the algorithm")

            algo.current_itr = 0
            trpo_paths = algo.train(already_init=outer_iter > 1)

        # import pdb; pdb.set_trace()
        if v['use_trpo_paths']:
            logger.log("labeling starts with trpo rollouts")
            [starts, labels] = label_states_from_paths(
                trpo_paths,
                n_traj=2,
                key='goal_reached',  # using the min n_traj
                as_goal=False,
                env=algo.env)
            paths = [path for paths in trpo_paths for path in paths]
        else:
            logger.log("labeling starts manually")
            labels, paths = label_states(starts,
                                         algo.env,
                                         policy,
                                         v['horizon'],
                                         as_goals=False,
                                         n_traj=v['n_traj'],
                                         key='goal_reached',
                                         full_path=True)

        with logger.tabular_prefix("OnStarts_"):
            algo.env.log_diagnostics(paths)

        logger.record_tabular('brownian_starts', brownian_starts.size)

        start_classes, text_labels = convert_label(labels)
        total_starts = labels.shape[0]
        logger.record_tabular('GenStarts_evaluated', total_starts)
        start_class_frac = OrderedDict(
        )  # this needs to be an ordered dict!! (for the log tabular)
        for k in text_labels.keys():
            frac = np.sum(start_classes == k) / total_starts
            logger.record_tabular('GenStart_frac_' + text_labels[k], frac)
            start_class_frac[text_labels[k]] = frac

        labels = np.logical_and(labels[:, 0],
                                labels[:, 1]).astype(int).reshape((-1, 1))

        logger.log("Labeling on uniform starts")
        with logger.tabular_prefix("Uniform_4med_"):
            unif_starts = all_feasible_starts.sample(500)
            unif_starts = np.pad(unif_starts,
                                 ((0, v['start_size'] - unif_starts.shape[1])),
                                 'constant')
            mean_reward, paths = evaluate_states(unif_starts,
                                                 algo.env,
                                                 policy,
                                                 v['horizon'],
                                                 n_traj=1,
                                                 key='goal_reached',
                                                 as_goals=False,
                                                 full_path=True)
            algo.env.log_diagnostics(paths)
        # with logger.tabular_prefix("Uniform_4med_bis_"):
        #     unif_starts = all_feasible_starts.sample(200)
        #     unif_starts1bis = np.pad(unif_starts, ((0, v['start_size'] - unif_starts.shape[1])), 'constant')
        #     mean_reward1bis, paths1bis = evaluate_states(unif_starts1bis, algo.env, policy, v['horizon'], n_traj=1,
        #                                                  key='goal_reached', as_goals=False, full_path=True)
        #     algo.env.log_diagnostics(paths1bis)
        # with logger.tabular_prefix("Uniform_4min_"):
        #     unif_starts2 = all_feasible_starts2.sample(200)
        #     unif_starts2 = np.pad(unif_starts2, ((0, v['start_size'] - unif_starts2.shape[1])), 'constant')
        #     mean_reward2, paths2 = evaluate_states(unif_starts2, algo.env, policy, v['horizon'], n_traj=1,
        #                                            key='goal_reached', as_goals=False, full_path=True)
        #     algo.env.log_diagnostics(paths2)
        # with logger.tabular_prefix("Uniform_2max_"):
        #     unif_starts3 = all_feasible_starts3.sample(200)
        #     unif_starts3 = np.pad(unif_starts3, ((0, v['start_size'] - unif_starts3.shape[1])), 'constant')
        #     mean_reward3, paths3 = evaluate_states(unif_starts3, algo.env, policy, v['horizon'], n_traj=1,
        #                                            key='goal_reached', as_goals=False, full_path=True)
        #     algo.env.log_diagnostics(paths3)

        logger.dump_tabular(with_prefix=True)

        # append new states to list of all starts (replay buffer):
        if v['seed_with'] == 'only_goods':
            logger.log("Appending good goals to replay and generating seeds")
            filtered_raw_starts = [
                start for start, label in zip(starts, labels) if label[0] == 1
            ]
            all_starts.append(filtered_raw_starts)
            if len(filtered_raw_starts) > 0:
                seed_starts = filtered_raw_starts
            elif np.sum(start_classes == 0) > np.sum(
                    start_classes == 1):  # if more low reward than high reward
                seed_starts = all_starts.sample(
                    300)  # sample them from the replay
            else:  # add a tone of noise if all the states I had ended up being high_reward!
                with algo.env.set_kill_outside(radius=v['kill_radius']):
                    seed_starts = generate_starts(
                        algo.env,
                        starts=starts,
                        horizon=int(v['horizon'] * 10),
                        subsample=v['num_new_starts'],
                        variance=v['brownian_variance'] * 10)
        elif v['seed_with'] == 'all_previous':
            logger.log("Appending all goals to replay and generating seeds")
            all_starts.append(starts)
            seed_starts = starts
        elif v['seed_with'] == 'on_policy':
            all_starts.append(starts)
            with algo.env.set_kill_outside(radius=v['kill_radius']):
                seed_starts = generate_starts(algo.env,
                                              policy,
                                              horizon=v['horizon'],
                                              subsample=v['num_new_starts'])
Exemple #9
0
def run_task(v):
    random.seed(v['seed'])
    np.random.seed(v['seed'])
    sampling_res = 2 if 'sampling_res' not in v.keys() else v['sampling_res']

    # Log performance of randomly initialized policy with FIXED goal [0.1, 0.1]
    logger.log("Initializing report and plot_policy_reward...")
    log_dir = logger.get_snapshot_dir()  # problem with logger module here!!
    report = HTMLReport(osp.join(log_dir, 'report.html'), images_per_row=3)

    report.add_header("{}".format(EXPERIMENT_TYPE))
    report.add_text(format_dict(v))

    inner_env = normalize(AntMazeEnv(maze_id=v['maze_id']))

    uniform_goal_generator = UniformStateGenerator(state_size=v['goal_size'],
                                                   bounds=v['goal_range'],
                                                   center=v['goal_center'])
    env = GoalExplorationEnv(
        env=inner_env,
        goal_generator=uniform_goal_generator,
        obs2goal_transform=lambda x: x[-3:-1],
        terminal_eps=v['terminal_eps'],
        distance_metric=v['distance_metric'],
        extend_dist_rew=v['extend_dist_rew'],
        only_feasible=v['only_feasible'],
        terminate_env=True,
    )

    policy = GaussianMLPPolicy(
        env_spec=env.spec,
        hidden_sizes=(64, 64),
        # Fix the variance since different goals will require different variances, making this parameter hard to learn.
        learn_std=v['learn_std'],
        adaptive_std=v['adaptive_std'],
        std_hidden_sizes=(16,
                          16),  # this is only used if adaptive_std is true!
        output_gain=v['output_gain'],
        init_std=v['policy_init_std'],
    )

    baseline = LinearFeatureBaseline(env_spec=env.spec)

    # initialize all logging arrays on itr0
    outer_iter = 0

    logger.log('Generating the Initial Heatmap...')
    test_and_plot_policy(policy,
                         env,
                         max_reward=v['max_reward'],
                         sampling_res=sampling_res,
                         n_traj=v['n_traj'],
                         itr=outer_iter,
                         report=report,
                         limit=v['goal_range'],
                         center=v['goal_center'])
    report.new_row()

    for outer_iter in range(1, v['outer_iters']):

        logger.log("Outer itr # %i" % outer_iter)
        logger.log("Sampling goals from the GAN")
        goals = np.random.uniform(
            np.array(v['goal_center']) - np.array(v['goal_range']),
            np.array(v['goal_center']) + np.array(v['goal_range']),
            size=(300, v['goal_size']))

        with ExperimentLogger(log_dir,
                              'last',
                              snapshot_mode='last',
                              hold_outter_log=True):
            logger.log("Updating the environment goal generator")
            if v['unif_goals']:
                env.update_goal_generator(
                    UniformListStateGenerator(
                        goals.tolist(),
                        persistence=v['persistence'],
                        with_replacement=v['with_replacement'],
                    ))
            else:
                env.update_goal_generator(FixedStateGenerator(v['final_goal']))

            logger.log("Training the algorithm")
            algo = TRPO(
                env=env,
                policy=policy,
                baseline=baseline,
                batch_size=v['pg_batch_size'],
                max_path_length=v['horizon'],
                n_itr=v['inner_iters'],
                step_size=0.01,
                plot=False,
            )

            algo.train()

        logger.log('Generating the Heatmap...')
        test_and_plot_policy(policy,
                             env,
                             max_reward=v['max_reward'],
                             sampling_res=sampling_res,
                             n_traj=v['n_traj'],
                             itr=outer_iter,
                             report=report,
                             limit=v['goal_range'],
                             center=v['goal_center'])

        logger.log("Labeling the goals")
        labels = label_states(goals,
                              env,
                              policy,
                              v['horizon'],
                              n_traj=v['n_traj'],
                              key='goal_reached')

        plot_labeled_states(goals,
                            labels,
                            report=report,
                            itr=outer_iter,
                            limit=v['goal_range'],
                            center=v['goal_center'],
                            maze_id=v['maze_id'])

        # ###### extra for deterministic:
        # logger.log("Labeling the goals deterministic")
        # with policy.set_std_to_0():
        #     labels_det = label_states(goals, env, policy, v['horizon'], n_traj=v['n_traj'], n_processes=1)
        # plot_labeled_states(goals, labels_det, report=report, itr=outer_iter, limit=v['goal_range'], center=v['goal_center'])

        logger.dump_tabular(with_prefix=False)
        report.new_row()
Exemple #10
0
def run_task(v):
    random.seed(v['seed'])
    np.random.seed(v['seed'])
    sampling_res = 2 if 'sampling_res' not in v.keys() else v['sampling_res']

    # Log performance of randomly initialized policy with FIXED goal [0.1, 0.1]
    logger.log("Initializing report and plot_policy_reward...")
    log_dir = logger.get_snapshot_dir()  # problem with logger module here!!
    report = HTMLReport(osp.join(log_dir, 'report.html'), images_per_row=3)

    report.add_header("{}".format(EXPERIMENT_TYPE))
    report.add_text(format_dict(v))

    tf_session = tf.Session()

    inner_env = normalize(AntMazeEnv(maze_id=v['maze_id']))

    uniform_goal_generator = UniformStateGenerator(state_size=v['goal_size'],
                                                   bounds=v['goal_range'],
                                                   center=v['goal_center'])
    env = GoalExplorationEnv(
        env=inner_env,
        goal_generator=uniform_goal_generator,
        obs2goal_transform=lambda x: x[-3:-1],
        terminal_eps=v['terminal_eps'],
        distance_metric=v['distance_metric'],
        extend_dist_rew=v['extend_dist_rew'],
        only_feasible=v['only_feasible'],
        terminate_env=True,
    )

    policy = GaussianMLPPolicy(
        env_spec=env.spec,
        hidden_sizes=(64, 64),
        # Fix the variance since different goals will require different variances, making this parameter hard to learn.
        learn_std=v['learn_std'],
        adaptive_std=v['adaptive_std'],
        std_hidden_sizes=(16,
                          16),  # this is only used if adaptive_std is true!
        output_gain=v['output_gain'],
        init_std=v['policy_init_std'],
    )

    baseline = LinearFeatureBaseline(env_spec=env.spec)

    # initialize all logging arrays on itr0
    outer_iter = 0

    logger.log('Generating the Initial Heatmap...')
    test_and_plot_policy(policy,
                         env,
                         max_reward=v['max_reward'],
                         sampling_res=sampling_res,
                         n_traj=v['n_traj'],
                         itr=outer_iter,
                         report=report,
                         limit=v['goal_range'],
                         center=v['goal_center'])
    report.new_row()

    # GAN
    logger.log("Instantiating the GAN...")
    gan_configs = {key[4:]: value for key, value in v.items() if 'GAN_' in key}
    for key, value in gan_configs.items():
        if value is tf.train.AdamOptimizer:
            gan_configs[key] = tf.train.AdamOptimizer(gan_configs[key +
                                                                  '_stepSize'])
        if value is tflearn.initializations.truncated_normal:
            gan_configs[key] = tflearn.initializations.truncated_normal(
                stddev=gan_configs[key + '_stddev'])

    gan = StateGAN(
        state_size=v['goal_size'],
        evaluater_size=v['num_labels'],
        state_range=v['goal_range'],
        state_center=v['goal_center'],
        state_noise_level=v['goal_noise_level'],
        generator_layers=v['gan_generator_layers'],
        discriminator_layers=v['gan_discriminator_layers'],
        noise_size=v['gan_noise_size'],
        tf_session=tf_session,
        configs=gan_configs,
    )

    all_goals = StateCollection(distance_threshold=v['coll_eps'])

    for outer_iter in range(1, v['outer_iters']):

        logger.log("Outer itr # %i" % outer_iter)
        feasible_goals = generate_initial_goals(env,
                                                policy,
                                                v['goal_range'],
                                                goal_center=v['goal_center'],
                                                horizon=v['horizon'])
        labels = np.ones((feasible_goals.shape[0],
                          2)).astype(np.float32)  # make them all good goals
        plot_labeled_states(feasible_goals,
                            labels,
                            report=report,
                            itr=outer_iter,
                            limit=v['goal_range'],
                            center=v['goal_center'],
                            maze_id=v['maze_id'],
                            summary_string_base='On-policy Goals:\n')
        if v['only_on_policy']:
            goals = feasible_goals[np.random.choice(
                feasible_goals.shape[0], v['num_new_goals'], replace=False), :]
        else:
            logger.log("Training the GAN")
            gan.pretrain(feasible_goals, v['gan_outer_iters'])
            # Sample GAN
            logger.log("Sampling goals from the GAN")
            raw_goals, _ = gan.sample_states_with_noise(v['num_new_goals'])

            if v['replay_buffer'] and outer_iter > 0 and all_goals.size > 0:
                old_goals = all_goals.sample(v['num_old_goals'])
                goals = np.vstack([raw_goals, old_goals])
            else:
                goals = raw_goals

        with ExperimentLogger(log_dir,
                              'last',
                              snapshot_mode='last',
                              hold_outter_log=True):
            logger.log("Updating the environment goal generator")
            env.update_goal_generator(
                UniformListStateGenerator(
                    goals.tolist(),
                    persistence=v['persistence'],
                    with_replacement=v['with_replacement'],
                ))

            logger.log("Training the algorithm")
            algo = TRPO(
                env=env,
                policy=policy,
                baseline=baseline,
                batch_size=v['pg_batch_size'],
                max_path_length=v['horizon'],
                n_itr=v['inner_iters'],
                step_size=0.01,
                plot=False,
            )

            algo.train()

        logger.log("Labeling the goals")
        labels = label_states(goals,
                              env,
                              policy,
                              v['horizon'],
                              n_traj=v['n_traj'],
                              key='goal_reached')

        plot_labeled_states(goals,
                            labels,
                            report=report,
                            itr=outer_iter,
                            limit=v['goal_range'],
                            center=v['goal_center'],
                            maze_id=v['maze_id'])

        logger.log('Generating the Heatmap...')
        test_and_plot_policy(policy,
                             env,
                             max_reward=v['max_reward'],
                             sampling_res=sampling_res,
                             n_traj=v['n_traj'],
                             itr=outer_iter,
                             report=report,
                             limit=v['goal_range'],
                             center=v['goal_center'])

        logger.dump_tabular(with_prefix=False)
        report.new_row()

        # append new goals to list of all goals (replay buffer): Not the low reward ones!!
        filtered_raw_goals = [
            goal for goal, label in zip(goals, labels) if label[0] == 1
        ]
        all_goals.append(filtered_raw_goals)

        if v['add_on_policy']:
            logger.log("sampling on policy")
            feasible_goals = generate_initial_goals(
                env,
                policy,
                v['goal_range'],
                goal_center=v['goal_center'],
                horizon=v['horizon'])
            # downsampled_feasible_goals = feasible_goals[np.random.choice(feasible_goals.shape[0], v['add_on_policy']),:]
            all_goals.append(feasible_goals)
Exemple #11
0
def run_task(v):
    random.seed(v['seed'])
    np.random.seed(v['seed'])
    sampling_res = 2 if 'sampling_res' not in v.keys() else v['sampling_res']
    samples_per_cell = 10  # for the oracle rejection sampling

    # Log performance of randomly initialized policy with FIXED goal [0.1, 0.1]
    logger.log("Initializing report and plot_policy_reward...")
    log_dir = logger.get_snapshot_dir()  # problem with logger module here!!
    if log_dir is None:
        log_dir = "/home/davheld/repos/rllab_goal_rl/data/local/debug"
    report = HTMLReport(osp.join(log_dir, 'report.html'), images_per_row=5)

    report.add_header("{}".format(EXPERIMENT_TYPE))
    report.add_text(format_dict(v))

    inner_env = normalize(PointMazeEnv(maze_id=v['maze_id']))

    fixed_goal_generator = FixedStateGenerator(state=v['ultimate_goal'])
    uniform_start_generator = UniformStateGenerator(state_size=v['start_size'],
                                                    bounds=v['start_range'],
                                                    center=v['start_center'])

    env = GoalStartExplorationEnv(
        env=inner_env,
        start_generator=uniform_start_generator,
        obs2start_transform=lambda x: x[:v['start_size']],
        goal_generator=fixed_goal_generator,
        obs2goal_transform=lambda x: x[:v['goal_size']],
        terminal_eps=v['terminal_eps'],
        distance_metric=v['distance_metric'],
        extend_dist_rew=v['extend_dist_rew'],
        only_feasible=v['only_feasible'],
        terminate_env=True,
    )

    policy = GaussianMLPPolicy(
        env_spec=env.spec,
        hidden_sizes=(64, 64),
        # Fix the variance since different goals will require different variances, making this parameter hard to learn.
        learn_std=v['learn_std'],
        adaptive_std=v['adaptive_std'],
        std_hidden_sizes=(16,
                          16),  # this is only used if adaptive_std is true!
        output_gain=v['output_gain'],
        init_std=v['policy_init_std'],
    )

    baseline = LinearFeatureBaseline(env_spec=env.spec)

    # initialize all logging arrays on itr0
    outer_iter = 0

    logger.log('Generating the Initial Heatmap...')
    plot_policy_means(policy,
                      env,
                      sampling_res=sampling_res,
                      report=report,
                      limit=v['goal_range'],
                      center=v['goal_center'])
    test_and_plot_policy(policy,
                         env,
                         as_goals=False,
                         max_reward=v['max_reward'],
                         sampling_res=sampling_res,
                         n_traj=v['n_traj'],
                         itr=outer_iter,
                         report=report,
                         center=v['goal_center'],
                         limit=v['goal_range'])
    report.new_row()

    all_starts = StateCollection(distance_threshold=v['coll_eps'])

    # Use asymmetric self-play to run Alice to generate starts for Bob.
    # Use a double horizon because the horizon is shared between Alice and Bob.
    env_alice = AliceEnv(env_alice=env,
                         env_bob=env,
                         policy_bob=policy,
                         max_path_length=v['alice_horizon'],
                         alice_factor=v['alice_factor'],
                         alice_bonus=v['alice_bonus'],
                         gamma=1,
                         stop_threshold=v['stop_threshold'])

    policy_alice = GaussianMLPPolicy(
        env_spec=env_alice.spec,
        hidden_sizes=(64, 64),
        # Fix the variance since different goals will require different variances, making this parameter hard to learn.
        learn_std=v['learn_std'],
        adaptive_std=v['adaptive_std'],
        std_hidden_sizes=(16,
                          16),  # this is only used if adaptive_std is true!
        output_gain=v['output_gain_alice'],
        init_std=v['policy_init_std_alice'],
    )
    baseline_alice = LinearFeatureBaseline(env_spec=env_alice.spec)

    algo_alice = TRPO(
        env=env_alice,
        policy=policy_alice,
        baseline=baseline_alice,
        batch_size=v['pg_batch_size_alice'],
        max_path_length=v['alice_horizon'],
        n_itr=v['inner_iters_alice'],
        step_size=0.01,
        discount=v['discount_alice'],
        plot=False,
    )

    for outer_iter in range(1, v['outer_iters']):

        logger.log("Outer itr # %i" % outer_iter)
        logger.log("Sampling starts")

        starts, t_alices = generate_starts_alice(
            env_alice=env_alice,
            algo_alice=algo_alice,
            start_states=[v['start_goal']],
            num_new_starts=v['num_new_starts'],
            log_dir=log_dir)

        labels = label_states(starts,
                              env,
                              policy,
                              v['horizon'],
                              as_goals=False,
                              n_traj=v['n_traj'],
                              key='goal_reached')
        plot_labeled_states(starts,
                            labels,
                            report=report,
                            itr=outer_iter,
                            limit=v['goal_range'],
                            center=v['goal_center'],
                            maze_id=v['maze_id'],
                            summary_string_base='initial starts labels:\n')
        report.save()

        if v['replay_buffer'] and outer_iter > 0 and all_starts.size > 0:
            old_starts = all_starts.sample(v['num_old_starts'])
            starts = np.vstack([starts, old_starts])

        with ExperimentLogger(log_dir,
                              'last',
                              snapshot_mode='last',
                              hold_outter_log=True):
            logger.log("Updating the environment start generator")
            env.update_start_generator(
                UniformListStateGenerator(
                    starts.tolist(),
                    persistence=v['persistence'],
                    with_replacement=v['with_replacement'],
                ))

            logger.log("Training the algorithm")
            algo = TRPO(
                env=env,
                policy=policy,
                baseline=baseline,
                batch_size=v['pg_batch_size'],
                max_path_length=v['horizon'],
                n_itr=v['inner_iters'],
                step_size=v['step_size'],
                discount=v['discount'],
                plot=False,
            )

            # We don't use these labels anyway, so we might as well take them from training.
            #trpo_paths = algo.train()
            algo.train()

        # logger.log("labeling starts with trpo rollouts")
        # [starts, labels] = label_states_from_paths(trpo_paths, n_traj=2, key='goal_reached',  # using the min n_traj
        #                                            as_goal=False, env=env)
        # paths = [path for paths in trpo_paths for path in paths]

        with logger.tabular_prefix('Outer_'):
            logger.record_tabular('t_alices', np.mean(t_alices))

        logger.log('Generating the Heatmap...')
        plot_policy_means(policy,
                          env,
                          sampling_res=sampling_res,
                          report=report,
                          limit=v['goal_range'],
                          center=v['goal_center'])
        test_and_plot_policy(policy,
                             env,
                             as_goals=False,
                             max_reward=v['max_reward'],
                             sampling_res=sampling_res,
                             n_traj=v['n_traj'],
                             itr=outer_iter,
                             report=report,
                             center=v['goal_center'],
                             limit=v['goal_range'])

        logger.log("Labeling the starts")
        labels = label_states(starts,
                              env,
                              policy,
                              v['horizon'],
                              as_goals=False,
                              n_traj=v['n_traj'],
                              key='goal_reached')

        plot_labeled_states(starts,
                            labels,
                            report=report,
                            itr=outer_iter,
                            limit=v['goal_range'],
                            center=v['goal_center'],
                            maze_id=v['maze_id'])

        # ###### extra for deterministic:
        # logger.log("Labeling the goals deterministic")
        # with policy.set_std_to_0():
        #     labels_det = label_states(goals, env, policy, v['horizon'], n_traj=v['n_traj'], n_processes=1)
        # plot_labeled_states(goals, labels_det, report=report, itr=outer_iter, limit=v['goal_range'], center=v['goal_center'])

        labels = np.logical_and(labels[:, 0],
                                labels[:, 1]).astype(int).reshape((-1, 1))

        logger.dump_tabular(with_prefix=False)
        report.new_row()

        # append new states to list of all starts (replay buffer): Not the low reward ones!!
        filtered_raw_starts = [
            start for start, label in zip(starts, labels) if label[0] == 1
        ]

        if len(
                filtered_raw_starts
        ) == 0:  # add a tone of noise if all the states I had ended up being high_reward!
            logger.log("Bad Alice!  All goals are high reward!")

        #     seed_starts = filtered_raw_starts
        # else:
        #     seed_starts = generate_starts(env, starts=starts, horizon=v['horizon'] * 2, subsample=v['num_new_starts'],
        #                                   variance=v['brownian_variance'] * 10)
        all_starts.append(filtered_raw_starts)