Exemple #1
0
    def populate_indicators(self, dataframe: DataFrame,
                            metadata: dict) -> DataFrame:
        # Populate/update the trade data if there is any, set trades to false if not live/dry
        self.custom_trade_info[metadata['pair']] = self.populate_trades(
            metadata['pair'])

        # Base timeframe indicators
        dataframe['rmi-slow'] = cta.RMI(dataframe, length=21, mom=5)
        dataframe['rmi-fast'] = cta.RMI(dataframe, length=8, mom=4)

        # Indicators for ROI and Custom Stoploss
        dataframe['atr'] = ta.ATR(dataframe, timeperiod=24)
        dataframe['roc'] = ta.ROC(dataframe, timeperiod=9)

        # Momentum Pinball: https://www.tradingview.com/script/fBpVB1ez-Momentum-Pinball-Indicator/
        dataframe['roc-mp'] = ta.ROC(dataframe, timeperiod=6)
        dataframe['mp'] = ta.RSI(dataframe['roc-mp'], timeperiod=6)

        # Trends, Peaks and Crosses
        dataframe['rmi-up'] = np.where(
            dataframe['rmi-slow'] >= dataframe['rmi-slow'].shift(), 1, 0)
        dataframe['rmi-dn'] = np.where(
            dataframe['rmi-slow'] <= dataframe['rmi-slow'].shift(), 1, 0)
        dataframe['rmi-up-trend'] = np.where(
            dataframe['rmi-up'].rolling(3, min_periods=1).sum() >= 2, 1, 0)
        dataframe['rmi-dn-trend'] = np.where(
            dataframe['rmi-dn'].rolling(3, min_periods=1).sum() >= 2, 1, 0)

        # Base pair informative timeframe indicators
        informative = self.dp.get_pair_dataframe(pair=metadata['pair'],
                                                 timeframe=self.inf_timeframe)

        # Get the "average day range" between the 1d high and 3d low to set up guards
        informative['1d_high'] = informative['close'].rolling(24).max()
        informative['3d_low'] = informative['close'].rolling(72).min()
        informative['adr'] = informative['1d_high'] - informative['3d_low']

        dataframe = merge_informative_pair(dataframe,
                                           informative,
                                           self.timeframe,
                                           self.inf_timeframe,
                                           ffill=True)

        # Other stake specific informative indicators
        # e.g if stake is BTC and current coin is XLM (pair: XLM/BTC)
        if self.config['stake_currency'] in ('BTC', 'ETH'):
            coin, stake = metadata['pair'].split('/')
            fiat = self.custom_fiat
            coin_fiat = f"{coin}/{fiat}"
            stake_fiat = f"{stake}/{fiat}"

            # Informative COIN/FIAT e.g. XLM/USD - Base Timeframe
            coin_fiat_tf = self.dp.get_pair_dataframe(pair=coin_fiat,
                                                      timeframe=self.timeframe)
            dataframe[f"{fiat}_rmi"] = cta.RMI(coin_fiat_tf, length=21, mom=5)

            # Informative STAKE/FIAT e.g. BTC/USD - Base Timeframe
            stake_fiat_tf = self.dp.get_pair_dataframe(
                pair=stake_fiat, timeframe=self.timeframe)
            dataframe[f"{stake}_rmi"] = cta.RMI(stake_fiat_tf,
                                                length=21,
                                                mom=5)

            # Informative STAKE/FIAT e.g. BTC/USD - Informative Timeframe
            stake_fiat_inf_tf = self.dp.get_pair_dataframe(
                pair=stake_fiat, timeframe=self.inf_timeframe)
            stake_fiat_inf_tf[f"{stake}_rmi"] = cta.RMI(stake_fiat_inf_tf,
                                                        length=48,
                                                        mom=5)
            dataframe = merge_informative_pair(dataframe,
                                               stake_fiat_inf_tf,
                                               self.timeframe,
                                               self.inf_timeframe,
                                               ffill=True)

        # Informatives for BTC/STAKE if not in whitelist
        else:
            pairs = self.dp.current_whitelist()
            btc_stake = f"BTC/{self.config['stake_currency']}"
            if not btc_stake in pairs:
                # BTC/STAKE - Base Timeframe
                btc_stake_tf = self.dp.get_pair_dataframe(
                    pair=btc_stake, timeframe=self.timeframe)
                dataframe['BTC_rmi'] = cta.RMI(btc_stake_tf, length=14, mom=3)

                # BTC/STAKE - Informative Timeframe
                btc_stake_inf_tf = self.dp.get_pair_dataframe(
                    pair=btc_stake, timeframe=self.inf_timeframe)
                btc_stake_inf_tf['BTC_rmi'] = cta.RMI(btc_stake_inf_tf,
                                                      length=48,
                                                      mom=5)
                dataframe = merge_informative_pair(dataframe,
                                                   btc_stake_inf_tf,
                                                   self.timeframe,
                                                   self.inf_timeframe,
                                                   ffill=True)

        # Slam some indicators into the trade_info dict so we can dynamic roi and custom stoploss in backtest
        if self.dp.runmode.value in ('backtest', 'hyperopt'):
            self.custom_trade_info[metadata['pair']]['roc'] = dataframe[[
                'date', 'roc'
            ]].copy().set_index('date')
            self.custom_trade_info[metadata['pair']]['atr'] = dataframe[[
                'date', 'atr'
            ]].copy().set_index('date')
            self.custom_trade_info[metadata['pair']]['rmi-slow'] = dataframe[[
                'date', 'rmi-slow'
            ]].copy().set_index('date')
            self.custom_trade_info[
                metadata['pair']]['rmi-up-trend'] = dataframe[[
                    'date', 'rmi-up-trend'
                ]].copy().set_index('date')

        return dataframe
    def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
        buy_params = self.get_pair_params(metadata['pair'], 'buy')
        sell_params = self.get_pair_params(metadata['pair'], 'sell')

        self.custom_trade_info[metadata['pair']] = self.populate_trades(metadata['pair'])
    
        # Base timeframe indicators
        dataframe['rmi-slow'] = cta.RMI(dataframe, length=21, mom=5)
        dataframe['rmi-fast'] = cta.RMI(dataframe, length=8, mom=4)

        # Momentum Pinball: https://www.tradingview.com/script/fBpVB1ez-Momentum-Pinball-Indicator/
        dataframe['roc'] = ta.ROC(dataframe, timeperiod=6)
        dataframe['mp']  = ta.RSI(dataframe['roc'], timeperiod=6)
  
        # RMI Trends and Peaks
        dataframe['rmi-up'] = np.where(dataframe['rmi-slow'] >= dataframe['rmi-slow'].shift(),1,0)      
        dataframe['rmi-dn'] = np.where(dataframe['rmi-slow'] <= dataframe['rmi-slow'].shift(),1,0)      
        dataframe['rmi-up-trend'] = np.where(dataframe['rmi-up'].rolling(3, min_periods=1).sum() >= 2,1,0)      
        dataframe['rmi-dn-trend'] = np.where(dataframe['rmi-dn'].rolling(3, min_periods=1).sum() >= 2,1,0)
        dataframe['rmi-max'] = dataframe['rmi-slow'].rolling(10, min_periods=1).max()

        # Fibonacci Retracements
        dataframe['fib-ret'] = cta.fib_ret(dataframe)

        # PMAX
        # matype = ema, src = hl2
        # pmax is really slow, only enable it if its actually being used.
        if buy_params['base-pmax-enable'] == True or sell_params['sell-pmax-enable'] == True:
            atr, ma, pmax, pm_loc = cta.PMAX(dataframe, period=10, multiplier=3, length=12, MAtype=1, src=2)
            dataframe['pmax-trend'] = pm_loc
        else: 
            dataframe['pmax-trend'] = False

        # Other stake specific informative indicators
        # e.g if stake is BTC and current coin is XLM (pair: XLM/BTC)
        # TODO: Re-evaluate the value of these informative indicators
        if self.config['stake_currency'] in ('BTC', 'ETH'):
            coin, stake = metadata['pair'].split('/')
            fiat = self.custom_fiat
            coin_fiat = f"{coin}/{fiat}"
            stake_fiat = f"{stake}/{fiat}"

            # Informative COIN/FIAT e.g. XLM/USD
            coin_fiat_tf = self.dp.get_pair_dataframe(pair=coin_fiat, timeframe=self.timeframe)
            dataframe[f"{fiat}_rsi"] = ta.RSI(coin_fiat_tf, timeperiod=14)

            # Informative STAKE/FIAT e.g. BTC/USD
            stake_fiat_tf = self.dp.get_pair_dataframe(pair=stake_fiat, timeframe=self.timeframe)
            stake_fiat_inf_tf = self.dp.get_pair_dataframe(pair=stake_fiat, timeframe=self.inf_timeframe)

            dataframe[f"{stake}_rsi"] = ta.RSI(stake_fiat_tf, timeperiod=14)
            dataframe[f"{stake}_rmi_{self.inf_timeframe}"] = cta.RMI(stake_fiat_inf_tf, length=21, mom=5)

        # Base pair informative timeframe indicators
        informative = self.dp.get_pair_dataframe(pair=metadata['pair'], timeframe=self.inf_timeframe)
        informative['rsi'] = ta.RSI(informative, timeperiod=14)
        
        # Get the "average day range" between the 1d high and 3d low to set up guards
        informative['1d_high'] = informative['close'].rolling(24).max()
        informative['3d_low'] = informative['close'].rolling(72).min()
        informative['adr'] = informative['1d_high'] - informative['3d_low']

        informative['fib-ret'] = cta.fib_ret(informative)

        dataframe = merge_informative_pair(dataframe, informative, self.timeframe, self.inf_timeframe, ffill=True)

        return dataframe
    def populate_indicators(self, dataframe: DataFrame,
                            metadata: dict) -> DataFrame:
        if not metadata['pair'] in self.custom_trade_info:
            self.custom_trade_info[metadata['pair']] = {}

        ## Base Timeframe / Pair

        dataframe['kama'] = ta.KAMA(dataframe, length=233)

        # RMI: https://www.tradingview.com/script/kwIt9OgQ-Relative-Momentum-Index/
        dataframe['rmi'] = cta.RMI(dataframe, length=24, mom=5)

        # Momentum Pinball: https://www.tradingview.com/script/fBpVB1ez-Momentum-Pinball-Indicator/
        dataframe['roc-mp'] = ta.ROC(dataframe, timeperiod=1)
        dataframe['mp'] = ta.RSI(dataframe['roc-mp'], timeperiod=3)

        # MA Streak: https://www.tradingview.com/script/Yq1z7cIv-MA-Streak-Can-Show-When-a-Run-Is-Getting-Long-in-the-Tooth/
        dataframe['mastreak'] = cta.mastreak(dataframe, period=4)

        # Percent Change Channel: https://www.tradingview.com/script/6wwAWXA1-MA-Streak-Change-Channel/
        upper, mid, lower = cta.pcc(dataframe, period=40, mult=3)
        dataframe['pcc-lowerband'] = lower
        dataframe['pcc-upperband'] = upper

        lookup_idxs = dataframe.index.values - (
            abs(dataframe['mastreak'].values) + 1)
        valid_lookups = lookup_idxs >= 0
        dataframe['sbc'] = np.nan
        dataframe.loc[valid_lookups, 'sbc'] = dataframe['close'].to_numpy()[
            lookup_idxs[valid_lookups].astype(int)]

        dataframe['streak-roc'] = 100 * (dataframe['close'] -
                                         dataframe['sbc']) / dataframe['sbc']

        # Trends, Peaks and Crosses
        dataframe['candle-up'] = np.where(
            dataframe['close'] >= dataframe['close'].shift(), 1, 0)
        dataframe['candle-up-trend'] = np.where(
            dataframe['candle-up'].rolling(5).sum() >= 3, 1, 0)

        dataframe['rmi-up'] = np.where(
            dataframe['rmi'] >= dataframe['rmi'].shift(), 1, 0)
        dataframe['rmi-up-trend'] = np.where(
            dataframe['rmi-up'].rolling(5).sum() >= 3, 1, 0)

        dataframe['rmi-dn'] = np.where(
            dataframe['rmi'] <= dataframe['rmi'].shift(), 1, 0)
        dataframe['rmi-dn-count'] = dataframe['rmi-dn'].rolling(8).sum()

        dataframe['streak-bo'] = np.where(
            dataframe['streak-roc'] < dataframe['pcc-lowerband'], 1, 0)
        dataframe['streak-bo-count'] = dataframe['streak-bo'].rolling(8).sum()

        # Indicators used only for ROI and Custom Stoploss
        ssldown, sslup = cta.SSLChannels_ATR(dataframe, length=21)
        dataframe['sroc'] = cta.SROC(dataframe,
                                     roclen=21,
                                     emalen=13,
                                     smooth=21)
        dataframe['ssl-dir'] = np.where(sslup > ssldown, 'up', 'down')

        # Base pair informative timeframe indicators
        informative = self.dp.get_pair_dataframe(pair=metadata['pair'],
                                                 timeframe=self.inf_timeframe)

        # Get the "average day range" between the 1d high and 1d low to set up guards
        informative['1d-high'] = informative['close'].rolling(24).max()
        informative['1d-low'] = informative['close'].rolling(24).min()
        informative['adr'] = informative['1d-high'] - informative['1d-low']

        dataframe = merge_informative_pair(dataframe,
                                           informative,
                                           self.timeframe,
                                           self.inf_timeframe,
                                           ffill=True)

        # Other stake specific informative indicators
        # e.g if stake is BTC and current coin is XLM (pair: XLM/BTC)
        if self.config['stake_currency'] in ('BTC', 'ETH'):
            coin, stake = metadata['pair'].split('/')
            fiat = self.custom_fiat
            coin_fiat = f"{coin}/{fiat}"
            stake_fiat = f"{stake}/{fiat}"

            # Informative COIN/FIAT e.g. XLM/USD - Base Timeframe
            coin_fiat_tf = self.dp.get_pair_dataframe(pair=coin_fiat,
                                                      timeframe=self.timeframe)
            dataframe[f"{fiat}_rmi"] = cta.RMI(coin_fiat_tf, length=55, mom=5)

            # Informative STAKE/FIAT e.g. BTC/USD - Base Timeframe
            stake_fiat_tf = self.dp.get_pair_dataframe(
                pair=stake_fiat, timeframe=self.timeframe)
            dataframe[f"{stake}_rmi"] = cta.RMI(stake_fiat_tf,
                                                length=55,
                                                mom=5)

        # Informatives for BTC/STAKE if not in whitelist
        else:
            pairs = self.dp.current_whitelist()
            btc_stake = f"BTC/{self.config['stake_currency']}"
            if not btc_stake in pairs:
                self.custom_btc_inf = True
                # BTC/STAKE - Base Timeframe
                btc_stake_tf = self.dp.get_pair_dataframe(
                    pair=btc_stake, timeframe=self.timeframe)
                dataframe['BTC_rmi'] = cta.RMI(btc_stake_tf, length=55, mom=5)
                dataframe['BTC_close'] = btc_stake_tf['close']
                dataframe['BTC_kama'] = ta.KAMA(btc_stake_tf, length=144)

        # Slam some indicators into the trade_info dict so we can dynamic roi and custom stoploss in backtest
        if self.dp.runmode.value in ('backtest', 'hyperopt'):
            self.custom_trade_info[metadata['pair']]['sroc'] = dataframe[[
                'date', 'sroc'
            ]].copy().set_index('date')
            self.custom_trade_info[metadata['pair']]['ssl-dir'] = dataframe[[
                'date', 'ssl-dir'
            ]].copy().set_index('date')
            self.custom_trade_info[
                metadata['pair']]['rmi-up-trend'] = dataframe[[
                    'date', 'rmi-up-trend'
                ]].copy().set_index('date')
            self.custom_trade_info[
                metadata['pair']]['candle-up-trend'] = dataframe[[
                    'date', 'candle-up-trend'
                ]].copy().set_index('date')

        return dataframe
Exemple #4
0
    def populate_indicators(self, dataframe: DataFrame,
                            metadata: dict) -> DataFrame:
        if not metadata['pair'] in self.custom_trade_info:
            self.custom_trade_info[metadata['pair']] = {}

        c = Consensus(dataframe)

        # Overlap / MA's
        c.evaluate_tema(period=12)
        c.evaluate_ema(period=6)
        c.evaluate_ema(period=12)
        c.evaluate_sma(period=12)
        c.evaluate_ichimoku()  # slightly slow
        #c.evaluate_hull()                    # very slow
        c.evaluate_vwma(period=20)

        # Oscillators
        c.evaluate_rsi(period=14)
        c.evaluate_stoch()
        #c.evaluate_cci()                     # slightly slow
        #c.evaluate_adx()
        c.evaluate_macd()
        c.evaluate_momentum()
        c.evaluate_williams()
        # c.evaluate_ultimate_oscilator()     # extremely slow
        # missing: awesome osc
        # missing: bull bear
        # missing: stoch rsi

        #c.evaluate_macd_cross_over()
        c.evaluate_osc()
        c.evaluate_cmf()
        c.evaluate_cmo()  # slightly slow
        #c.evaluate_laguerre()                # slow

        dataframe['consensus-buy'] = c.score()['buy']
        dataframe['consensus-sell'] = c.score()['sell']

        # Indicators for ROI and Custom Stoploss
        dataframe['atr'] = ta.ATR(dataframe, timeperiod=24)
        dataframe['roc'] = ta.ROC(dataframe, timeperiod=9)

        # Trend Indicators for ROI
        dataframe['rmi-slow'] = cta.RMI(dataframe, length=21, mom=5)

        dataframe['rmi-up'] = np.where(
            dataframe['rmi-slow'] >= dataframe['rmi-slow'].shift(), 1, 0)
        dataframe['rmi-up-trend'] = np.where(
            dataframe['rmi-up'].rolling(3, min_periods=1).sum() >= 2, 1, 0)

        # Base pair informative timeframe indicators
        informative = self.dp.get_pair_dataframe(pair=metadata['pair'],
                                                 timeframe=self.inf_timeframe)

        # Get the "average day range" between the 1d high and 3d low to set up guards
        informative['1d_high'] = informative['close'].rolling(24).max()
        informative['3d_low'] = informative['close'].rolling(72).min()
        informative['adr'] = informative['1d_high'] - informative['3d_low']

        dataframe = merge_informative_pair(dataframe,
                                           informative,
                                           self.timeframe,
                                           self.inf_timeframe,
                                           ffill=True)

        # Other stake specific informative indicators
        # e.g if stake is BTC and current coin is XLM (pair: XLM/BTC)
        if self.config['stake_currency'] in ('BTC', 'ETH'):
            coin, stake = metadata['pair'].split('/')
            fiat = self.custom_fiat
            coin_fiat = f"{coin}/{fiat}"
            stake_fiat = f"{stake}/{fiat}"

            # Informative COIN/FIAT e.g. XLM/USD - Base Timeframe
            coin_fiat_tf = self.dp.get_pair_dataframe(pair=coin_fiat,
                                                      timeframe=self.timeframe)
            dataframe[f"{fiat}_rmi"] = cta.RMI(coin_fiat_tf, length=21, mom=5)

            # Informative STAKE/FIAT e.g. BTC/USD - Base Timeframe
            stake_fiat_tf = self.dp.get_pair_dataframe(
                pair=stake_fiat, timeframe=self.timeframe)
            dataframe[f"{stake}_rmi"] = cta.RMI(stake_fiat_tf,
                                                length=21,
                                                mom=5)

            # Informative STAKE/FIAT e.g. BTC/USD - Informative Timeframe
            stake_fiat_inf_tf = self.dp.get_pair_dataframe(
                pair=stake_fiat, timeframe=self.inf_timeframe)
            stake_fiat_inf_tf[f"{stake}_rmi"] = cta.RMI(stake_fiat_inf_tf,
                                                        length=48,
                                                        mom=5)
            dataframe = merge_informative_pair(dataframe,
                                               stake_fiat_inf_tf,
                                               self.timeframe,
                                               self.inf_timeframe,
                                               ffill=True)

        # Informatives for BTC/STAKE if not in whitelist
        else:
            pairs = self.dp.current_whitelist()
            btc_stake = f"BTC/{self.config['stake_currency']}"
            if not btc_stake in pairs:
                # BTC/STAKE - Base Timeframe
                btc_stake_tf = self.dp.get_pair_dataframe(
                    pair=btc_stake, timeframe=self.timeframe)
                cbtc = Consensus(btc_stake_tf)

                cbtc.evaluate_tema(period=12)
                cbtc.evaluate_ema(period=12)
                cbtc.evaluate_ema(period=24)
                cbtc.evaluate_sma(period=12)
                cbtc.evaluate_ichimoku()
                cbtc.evaluate_vwma(period=20)
                cbtc.evaluate_rsi(period=14)
                cbtc.evaluate_stoch()
                cbtc.evaluate_macd()
                cbtc.evaluate_momentum()
                cbtc.evaluate_williams()
                cbtc.evaluate_osc()
                cbtc.evaluate_cmf()
                cbtc.evaluate_cmo()
                cbtc.evaluate_laguerre()

                dataframe['BTC_consensus-buy'] = cbtc.score()['buy']

                # BTC/STAKE - Informative Timeframe
                # btc_stake_inf_tf = self.dp.get_pair_dataframe(pair=btc_stake, timeframe=self.inf_timeframe)
                # dataframe = merge_informative_pair(dataframe, btc_stake_inf_tf, self.timeframe, self.inf_timeframe, ffill=True)

        # Slam some indicators into the trade_info dict so we can dynamic roi and custom stoploss in backtest
        if self.dp.runmode.value in ('backtest', 'hyperopt'):
            # Attempting to use a temporary holding place for dynamic roi backtest return value...
            if not 'backtest' in self.custom_trade_info:
                self.custom_trade_info['backtest'] = {}

            self.custom_trade_info[metadata['pair']]['roc'] = dataframe[[
                'date', 'roc'
            ]].copy().set_index('date')
            self.custom_trade_info[metadata['pair']]['atr'] = dataframe[[
                'date', 'atr'
            ]].copy().set_index('date')
            self.custom_trade_info[metadata['pair']]['rmi-slow'] = dataframe[[
                'date', 'rmi-slow'
            ]].copy().set_index('date')
            self.custom_trade_info[
                metadata['pair']]['rmi-up-trend'] = dataframe[[
                    'date', 'rmi-up-trend'
                ]].copy().set_index('date')
            self.custom_trade_info[
                metadata['pair']]['consensus-buy'] = dataframe[[
                    'date', 'consensus-buy'
                ]].copy().set_index('date')
            self.custom_trade_info[
                metadata['pair']]['consensus-sell'] = dataframe[[
                    'date', 'consensus-sell'
                ]].copy().set_index('date')

        return dataframe
Exemple #5
0
    def populate_indicators(self, dataframe: DataFrame,
                            metadata: dict) -> DataFrame:
        self.custom_trade_info[metadata['pair']] = self.populate_trades(
            metadata['pair'])

        c = Consensus(dataframe)

        # Overlap / MA's
        c.evaluate_tema(period=12)
        c.evaluate_ema(period=8)
        c.evaluate_ema(period=13)
        c.evaluate_ema(period=21)
        c.evaluate_ema(period=34)
        c.evaluate_ema(period=55)
        c.evaluate_ichimoku()  # slightly slow
        c.evaluate_hull()  # very slow
        c.evaluate_vwma(period=20)

        # Oscillators
        c.evaluate_rsi(period=14)
        c.evaluate_stoch()
        c.evaluate_cci()  # slightly slow
        c.evaluate_adx()
        c.evaluate_macd()
        c.evaluate_momentum()
        c.evaluate_williams()
        # c.evaluate_ultimate_oscilator()    # extremely slow
        # missing: awesome osc
        # missing: bull bear
        # missing: stoch rsi

        c.evaluate_macd_cross_over()
        c.evaluate_osc()
        c.evaluate_cmf()
        c.evaluate_cmo()  # slightly slow
        c.evaluate_laguerre()  # slow

        dataframe['consensus_buy'] = c.score()['buy']
        dataframe['consensus_sell'] = c.score()['sell']

        # Trend Indicators for ROI
        dataframe['rmi-slow'] = cta.RMI(dataframe, length=21, mom=5)

        dataframe['rmi-up'] = np.where(
            dataframe['rmi-slow'] >= dataframe['rmi-slow'].shift(), 1, 0)
        dataframe['rmi-up-trend'] = np.where(
            dataframe['rmi-up'].rolling(3, min_periods=1).sum() >= 2, 1, 0)

        # Base pair informative timeframe indicators
        informative = self.dp.get_pair_dataframe(pair=metadata['pair'],
                                                 timeframe=self.inf_timeframe)

        # Get the "average day range" between the 1d high and 3d low to set up guards
        informative['1d_high'] = informative['close'].rolling(24).max()
        informative['3d_low'] = informative['close'].rolling(72).min()
        informative['adr'] = informative['1d_high'] - informative['3d_low']

        dataframe = merge_informative_pair(dataframe,
                                           informative,
                                           self.timeframe,
                                           self.inf_timeframe,
                                           ffill=True)

        # Other stake specific informative indicators
        # e.g if stake is BTC and current coin is XLM (pair: XLM/BTC)
        if self.config['stake_currency'] in ('BTC', 'ETH'):
            coin, stake = metadata['pair'].split('/')
            fiat = self.custom_fiat
            coin_fiat = f"{coin}/{fiat}"
            stake_fiat = f"{stake}/{fiat}"

            # Informative COIN/FIAT e.g. XLM/USD - Base Timeframe
            coin_fiat_tf = self.dp.get_pair_dataframe(pair=coin_fiat,
                                                      timeframe=self.timeframe)
            dataframe[f"{fiat}_rmi"] = cta.RMI(coin_fiat_tf, length=21, mom=5)

            # Informative STAKE/FIAT e.g. BTC/USD - Base Timeframe
            stake_fiat_tf = self.dp.get_pair_dataframe(
                pair=stake_fiat, timeframe=self.timeframe)
            dataframe[f"{stake}_rmi"] = cta.RMI(stake_fiat_tf,
                                                length=21,
                                                mom=5)

            # Informative STAKE/FIAT e.g. BTC/USD - Informative Timeframe
            stake_fiat_inf_tf = self.dp.get_pair_dataframe(
                pair=stake_fiat, timeframe=self.inf_timeframe)
            stake_fiat_inf_tf[f"{stake}_rmi"] = cta.RMI(stake_fiat_inf_tf,
                                                        length=48,
                                                        mom=5)
            dataframe = merge_informative_pair(dataframe,
                                               stake_fiat_inf_tf,
                                               self.timeframe,
                                               self.inf_timeframe,
                                               ffill=True)

        # Informatives for BTC/STAKE if not in whitelist
        else:
            pairs = self.dp.current_whitelist()
            btc_stake = f"BTC/{self.config['stake_currency']}"
            if not btc_stake in pairs:
                # BTC/STAKE - Base Timeframe
                btc_stake_tf = self.dp.get_pair_dataframe(
                    pair=btc_stake, timeframe=self.timeframe)
                cbtc = Consensus(btc_stake_tf)

                cbtc.evaluate_tema(period=12)
                cbtc.evaluate_ema(period=8)
                cbtc.evaluate_ema(period=13)
                cbtc.evaluate_ema(period=21)
                cbtc.evaluate_ema(period=34)
                cbtc.evaluate_ema(period=55)
                cbtc.evaluate_ichimoku()
                cbtc.evaluate_vwma(period=20)
                cbtc.evaluate_rsi(period=14)
                cbtc.evaluate_stoch()
                cbtc.evaluate_cci()
                cbtc.evaluate_adx()
                cbtc.evaluate_macd()
                cbtc.evaluate_momentum()
                cbtc.evaluate_williams()
                cbtc.evaluate_macd_cross_over()
                cbtc.evaluate_osc()
                cbtc.evaluate_cmf()
                cbtc.evaluate_cmo()
                cbtc.evaluate_laguerre()

                dataframe['BTC_consensus_buy'] = cbtc.score()['buy']

                # BTC/STAKE - Informative Timeframe
                # btc_stake_inf_tf = self.dp.get_pair_dataframe(pair=btc_stake, timeframe=self.inf_timeframe)
                # dataframe = merge_informative_pair(dataframe, btc_stake_inf_tf, self.timeframe, self.inf_timeframe, ffill=True)

        return dataframe
Exemple #6
0
    def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
        # Populate/update the trade data if there is any, set trades to false if not live/dry
        self.custom_trade_info[metadata['pair']] = self.populate_trades(metadata['pair'])

        # Indicators for ROI and Custom Stoploss
        dataframe['atr'] = ta.ATR(dataframe, timeperiod=24)
        dataframe['roc'] = ta.ROC(dataframe, timeperiod=9)
        dataframe['rmi-slow'] = cta.RMI(dataframe, length=21, mom=5)

        # Trends, Peaks and Crosses
        dataframe['rmi-up'] = np.where(dataframe['rmi-slow'] >= dataframe['rmi-slow'].shift(),1,0)          
        dataframe['rmi-up-trend'] = np.where(dataframe['rmi-up'].rolling(3, min_periods=1).sum() >= 2,1,0)

        # strategy BinHV45
        mid, lower = cta.bollinger_bands(dataframe['close'], window_size=40, num_of_std=2)
        dataframe['lower'] = lower
        dataframe['bbdelta'] = (mid - dataframe['lower']).abs()
        dataframe['closedelta'] = (dataframe['close'] - dataframe['close'].shift()).abs()
        dataframe['tail'] = (dataframe['close'] - dataframe['low']).abs()
        # strategy ClucMay72018
        bollinger = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe), window=20, stds=2)
        dataframe['bb_lowerband'] = bollinger['lower']
        dataframe['bb_middleband'] = bollinger['mid']
        dataframe['ema_slow'] = ta.EMA(dataframe, timeperiod=50)
        dataframe['volume_mean_slow'] = dataframe['volume'].rolling(window=30).mean()

        # Base pair informative timeframe indicators
        informative = self.dp.get_pair_dataframe(pair=metadata['pair'], timeframe=self.inf_timeframe)
        
        # Get the "average day range" between the 1d high and 3d low to set up guards
        informative['1d_high'] = informative['close'].rolling(24).max()
        informative['3d_low'] = informative['close'].rolling(72).min()
        informative['adr'] = informative['1d_high'] - informative['3d_low']

        dataframe = merge_informative_pair(dataframe, informative, self.timeframe, self.inf_timeframe, ffill=True)

        # Other stake specific informative indicators
        # e.g if stake is BTC and current coin is XLM (pair: XLM/BTC)
        if self.config['stake_currency'] in ('BTC', 'ETH'):
            coin, stake = metadata['pair'].split('/')
            fiat = self.custom_fiat
            coin_fiat = f"{coin}/{fiat}"
            stake_fiat = f"{stake}/{fiat}"

            # Informative COIN/FIAT e.g. XLM/USD - Base Timeframe
            coin_fiat_tf = self.dp.get_pair_dataframe(pair=coin_fiat, timeframe=self.timeframe)
            dataframe[f"{fiat}_rmi"] = cta.RMI(coin_fiat_tf, length=21, mom=5)

            # Informative STAKE/FIAT e.g. BTC/USD - Base Timeframe
            stake_fiat_tf = self.dp.get_pair_dataframe(pair=stake_fiat, timeframe=self.timeframe)
            dataframe[f"{stake}_rmi"] = cta.RMI(stake_fiat_tf, length=21, mom=5)

            # Informative STAKE/FIAT e.g. BTC/USD - Informative Timeframe
            stake_fiat_inf_tf = self.dp.get_pair_dataframe(pair=stake_fiat, timeframe=self.inf_timeframe)
            stake_fiat_inf_tf[f"{stake}_rmi"] = cta.RMI(stake_fiat_inf_tf, length=48, mom=5)
            dataframe = merge_informative_pair(dataframe, stake_fiat_inf_tf, self.timeframe, self.inf_timeframe, ffill=True)

        # Informatives for BTC/STAKE if not in whitelist
        else:
            pairs = self.dp.current_whitelist()
            btc_stake = f"BTC/{self.config['stake_currency']}"
            if not btc_stake in pairs:
                # BTC/STAKE - Base Timeframe
                btc_stake_tf = self.dp.get_pair_dataframe(pair=btc_stake, timeframe=self.timeframe)
                dataframe['BTC_rmi'] = cta.RMI(btc_stake_tf, length=14, mom=3)

                # BTC/STAKE - Informative Timeframe
                btc_stake_inf_tf = self.dp.get_pair_dataframe(pair=btc_stake, timeframe=self.inf_timeframe)
                btc_stake_inf_tf['BTC_rmi'] = cta.RMI(btc_stake_inf_tf, length=48, mom=5)
                dataframe = merge_informative_pair(dataframe, btc_stake_inf_tf, self.timeframe, self.inf_timeframe, ffill=True)

        # Slam some indicators into the trade_info dict so we can dynamic roi and custom stoploss in backtest
        if self.dp.runmode.value in ('backtest', 'hyperopt'):
            self.custom_trade_info[metadata['pair']]['roc'] = dataframe[['date', 'roc']].copy().set_index('date')
            self.custom_trade_info[metadata['pair']]['atr'] = dataframe[['date', 'atr']].copy().set_index('date')
            self.custom_trade_info[metadata['pair']]['rmi-slow'] = dataframe[['date', 'rmi-slow']].copy().set_index('date')
            self.custom_trade_info[metadata['pair']]['rmi-up-trend'] = dataframe[['date', 'rmi-up-trend']].copy().set_index('date')

        return dataframe